Cargando…

Toward a better modulus at shallow indentations—Enhanced tip and sample characterization for quantitative atomic force microscopy

Approximations of the geometry of indenting probes, particularly when using shallow indentations on soft materials, can lead to the erroneous reporting of mechanical data in atomic force microscopy (AFM). Scanning electron microscopy (SEM) identified a marked change in geometry toward the tip apex w...

Descripción completa

Detalles Bibliográficos
Autor principal: Owen, David S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099859/
https://www.ncbi.nlm.nih.gov/pubmed/36398794
http://dx.doi.org/10.1002/jemt.24261
Descripción
Sumario:Approximations of the geometry of indenting probes, particularly when using shallow indentations on soft materials, can lead to the erroneous reporting of mechanical data in atomic force microscopy (AFM). Scanning electron microscopy (SEM) identified a marked change in geometry toward the tip apex where the conical probe assumes a near linear flat‐punch geometry. Polydimethylsiloxane (PDMS) is a ubiquitous elastomer within the materials and biological sciences. Its elastic modulus is widely characterized but the data are dispersed and can display orders of magnitude disparity. Herein, we compare the moduli gathered from a range of analytical techniques and relate these to the molecular architecture identified with AFM. We present a simple method that considers sub‐100 nm indentations of PDMS using the Hertz and Sneddon contact mechanics models, and how this could be used to improve the output of shallow indentations on similarly soft materials, such as polymers or cells.