Cargando…
Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome
The shared random effects joint model is one of the most widely used approaches to study the associations between longitudinal biomarkers and a survival outcome and make dynamic risk predictions using the longitudinally measured biomarkers. Various types of joint models have been developed under dif...
Autores principales: | Tu, Jieqi, Sun, Jiehuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099947/ https://www.ncbi.nlm.nih.gov/pubmed/36443903 http://dx.doi.org/10.1002/sim.9619 |
Ejemplares similares
-
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation
por: Galy-Fajou, Théo, et al.
Publicado: (2021) -
Approximate Inference for Hierarchical Gaussian Markov Random Fields Models
por: Rue, H, et al.
Publicado: (2005) -
Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations
por: Verde, Licia, et al.
Publicado: (2013) -
Making the Coupled Gaussian Process Dynamical Model Modular and Scalable with Variational Approximations †
por: Velychko, Dmytro, et al.
Publicado: (2018) -
Gradient Regularization as Approximate Variational Inference
por: Unlu, Ali, et al.
Publicado: (2021)