Cargando…

Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity

Long‐term atmospheric CO(2) concentration records have suggested a reduction in the positive effect of warming on high‐latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zona, Donatella, Lafleur, Peter M., Hufkens, Koen, Gioli, Beniamino, Bailey, Barbara, Burba, George, Euskirchen, Eugénie S., Watts, Jennifer D., Arndt, Kyle A., Farina, Mary, Kimball, John S., Heimann, Martin, Göckede, Mathias, Pallandt, Martijn, Christensen, Torben R., Mastepanov, Mikhail, López‐Blanco, Efrén, Dolman, Albertus J., Commane, Roisin, Miller, Charles E., Hashemi, Josh, Kutzbach, Lars, Holl, David, Boike, Julia, Wille, Christian, Sachs, Torsten, Kalhori, Aram, Humphreys, Elyn R., Sonnentag, Oliver, Meyer, Gesa, Gosselin, Gabriel H., Marsh, Philip, Oechel, Walter C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099953/
https://www.ncbi.nlm.nih.gov/pubmed/36353841
http://dx.doi.org/10.1111/gcb.16487
_version_ 1785025169459249152
author Zona, Donatella
Lafleur, Peter M.
Hufkens, Koen
Gioli, Beniamino
Bailey, Barbara
Burba, George
Euskirchen, Eugénie S.
Watts, Jennifer D.
Arndt, Kyle A.
Farina, Mary
Kimball, John S.
Heimann, Martin
Göckede, Mathias
Pallandt, Martijn
Christensen, Torben R.
Mastepanov, Mikhail
López‐Blanco, Efrén
Dolman, Albertus J.
Commane, Roisin
Miller, Charles E.
Hashemi, Josh
Kutzbach, Lars
Holl, David
Boike, Julia
Wille, Christian
Sachs, Torsten
Kalhori, Aram
Humphreys, Elyn R.
Sonnentag, Oliver
Meyer, Gesa
Gosselin, Gabriel H.
Marsh, Philip
Oechel, Walter C.
author_facet Zona, Donatella
Lafleur, Peter M.
Hufkens, Koen
Gioli, Beniamino
Bailey, Barbara
Burba, George
Euskirchen, Eugénie S.
Watts, Jennifer D.
Arndt, Kyle A.
Farina, Mary
Kimball, John S.
Heimann, Martin
Göckede, Mathias
Pallandt, Martijn
Christensen, Torben R.
Mastepanov, Mikhail
López‐Blanco, Efrén
Dolman, Albertus J.
Commane, Roisin
Miller, Charles E.
Hashemi, Josh
Kutzbach, Lars
Holl, David
Boike, Julia
Wille, Christian
Sachs, Torsten
Kalhori, Aram
Humphreys, Elyn R.
Sonnentag, Oliver
Meyer, Gesa
Gosselin, Gabriel H.
Marsh, Philip
Oechel, Walter C.
author_sort Zona, Donatella
collection PubMed
description Long‐term atmospheric CO(2) concentration records have suggested a reduction in the positive effect of warming on high‐latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long‐term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site‐years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.
format Online
Article
Text
id pubmed-10099953
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-100999532023-04-14 Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity Zona, Donatella Lafleur, Peter M. Hufkens, Koen Gioli, Beniamino Bailey, Barbara Burba, George Euskirchen, Eugénie S. Watts, Jennifer D. Arndt, Kyle A. Farina, Mary Kimball, John S. Heimann, Martin Göckede, Mathias Pallandt, Martijn Christensen, Torben R. Mastepanov, Mikhail López‐Blanco, Efrén Dolman, Albertus J. Commane, Roisin Miller, Charles E. Hashemi, Josh Kutzbach, Lars Holl, David Boike, Julia Wille, Christian Sachs, Torsten Kalhori, Aram Humphreys, Elyn R. Sonnentag, Oliver Meyer, Gesa Gosselin, Gabriel H. Marsh, Philip Oechel, Walter C. Glob Chang Biol Research Articles Long‐term atmospheric CO(2) concentration records have suggested a reduction in the positive effect of warming on high‐latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long‐term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site‐years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer. John Wiley and Sons Inc. 2022-11-10 2023-03 /pmc/articles/PMC10099953/ /pubmed/36353841 http://dx.doi.org/10.1111/gcb.16487 Text en © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Zona, Donatella
Lafleur, Peter M.
Hufkens, Koen
Gioli, Beniamino
Bailey, Barbara
Burba, George
Euskirchen, Eugénie S.
Watts, Jennifer D.
Arndt, Kyle A.
Farina, Mary
Kimball, John S.
Heimann, Martin
Göckede, Mathias
Pallandt, Martijn
Christensen, Torben R.
Mastepanov, Mikhail
López‐Blanco, Efrén
Dolman, Albertus J.
Commane, Roisin
Miller, Charles E.
Hashemi, Josh
Kutzbach, Lars
Holl, David
Boike, Julia
Wille, Christian
Sachs, Torsten
Kalhori, Aram
Humphreys, Elyn R.
Sonnentag, Oliver
Meyer, Gesa
Gosselin, Gabriel H.
Marsh, Philip
Oechel, Walter C.
Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
title Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
title_full Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
title_fullStr Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
title_full_unstemmed Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
title_short Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
title_sort pan‐arctic soil moisture control on tundra carbon sequestration and plant productivity
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099953/
https://www.ncbi.nlm.nih.gov/pubmed/36353841
http://dx.doi.org/10.1111/gcb.16487
work_keys_str_mv AT zonadonatella panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT lafleurpeterm panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT hufkenskoen panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT giolibeniamino panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT baileybarbara panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT burbageorge panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT euskircheneugenies panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT wattsjenniferd panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT arndtkylea panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT farinamary panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT kimballjohns panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT heimannmartin panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT gockedemathias panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT pallandtmartijn panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT christensentorbenr panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT mastepanovmikhail panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT lopezblancoefren panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT dolmanalbertusj panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT commaneroisin panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT millercharlese panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT hashemijosh panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT kutzbachlars panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT holldavid panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT boikejulia panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT willechristian panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT sachstorsten panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT kalhoriaram panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT humphreyselynr panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT sonnentagoliver panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT meyergesa panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT gosselingabrielh panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT marshphilip panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity
AT oechelwalterc panarcticsoilmoisturecontrolontundracarbonsequestrationandplantproductivity