Cargando…
Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode
Vanadium redox flow batteries (VRFBs) are appealing large‐scale energy storage systems due to their unique properties of independent energy/power design. The VRFBs stack design is crucial for technology deployment in power applications. Besides the design, the stack suffers from high voltage losses...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100004/ https://www.ncbi.nlm.nih.gov/pubmed/37063813 http://dx.doi.org/10.1002/cctc.202201106 |
_version_ | 1785025181794697216 |
---|---|
author | Mousavihashemi, Seyedabolfazl Murcia‐López, Sebastián Rodriguez‐Olguin, Miguel A. Gardeniers, Han Andreu, Teresa Morante, Juan Ramon Susarrey Arce, Arturo Flox, Cristina |
author_facet | Mousavihashemi, Seyedabolfazl Murcia‐López, Sebastián Rodriguez‐Olguin, Miguel A. Gardeniers, Han Andreu, Teresa Morante, Juan Ramon Susarrey Arce, Arturo Flox, Cristina |
author_sort | Mousavihashemi, Seyedabolfazl |
collection | PubMed |
description | Vanadium redox flow batteries (VRFBs) are appealing large‐scale energy storage systems due to their unique properties of independent energy/power design. The VRFBs stack design is crucial for technology deployment in power applications. Besides the design, the stack suffers from high voltage losses caused by the electrodes. The introduction of active sites into the electrode to facilitate the reaction kinetic is crucial in boosting the power rate of the VRFBs. Here, an O‐rich layer has been applied onto structured graphite felt (GF) by depositing WO(3) to increase the oxygen species content. The oxygen species are the active site during the positive reaction (VO(2) (+)/VO(2+)) in VRFB. The increased electrocatalytic activity is demonstrated by the monoclinic (m)‐WO(3)/GF electrode that minimizes the voltage losses, yielding excellent performance results in terms of power density output and limiting current density (556 mWcm(−2)@800 mAcm(−2)). The results confirm that the m‐WO(3)/GF electrode is a promising electrode for high‐power in VRFBs, overcoming the performance‐limiting issues in a positive half‐reaction. |
format | Online Article Text |
id | pubmed-10100004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101000042023-04-14 Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode Mousavihashemi, Seyedabolfazl Murcia‐López, Sebastián Rodriguez‐Olguin, Miguel A. Gardeniers, Han Andreu, Teresa Morante, Juan Ramon Susarrey Arce, Arturo Flox, Cristina ChemCatChem Research Articles Vanadium redox flow batteries (VRFBs) are appealing large‐scale energy storage systems due to their unique properties of independent energy/power design. The VRFBs stack design is crucial for technology deployment in power applications. Besides the design, the stack suffers from high voltage losses caused by the electrodes. The introduction of active sites into the electrode to facilitate the reaction kinetic is crucial in boosting the power rate of the VRFBs. Here, an O‐rich layer has been applied onto structured graphite felt (GF) by depositing WO(3) to increase the oxygen species content. The oxygen species are the active site during the positive reaction (VO(2) (+)/VO(2+)) in VRFB. The increased electrocatalytic activity is demonstrated by the monoclinic (m)‐WO(3)/GF electrode that minimizes the voltage losses, yielding excellent performance results in terms of power density output and limiting current density (556 mWcm(−2)@800 mAcm(−2)). The results confirm that the m‐WO(3)/GF electrode is a promising electrode for high‐power in VRFBs, overcoming the performance‐limiting issues in a positive half‐reaction. John Wiley and Sons Inc. 2022-11-16 2022-12-07 /pmc/articles/PMC10100004/ /pubmed/37063813 http://dx.doi.org/10.1002/cctc.202201106 Text en © 2022 The Authors. ChemCatChem published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Mousavihashemi, Seyedabolfazl Murcia‐López, Sebastián Rodriguez‐Olguin, Miguel A. Gardeniers, Han Andreu, Teresa Morante, Juan Ramon Susarrey Arce, Arturo Flox, Cristina Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode |
title | Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode |
title_full | Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode |
title_fullStr | Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode |
title_full_unstemmed | Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode |
title_short | Overcoming Voltage Losses in Vanadium Redox Flow Batteries Using WO(3) as a Positive Electrode |
title_sort | overcoming voltage losses in vanadium redox flow batteries using wo(3) as a positive electrode |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100004/ https://www.ncbi.nlm.nih.gov/pubmed/37063813 http://dx.doi.org/10.1002/cctc.202201106 |
work_keys_str_mv | AT mousavihashemiseyedabolfazl overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT murcialopezsebastian overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT rodriguezolguinmiguela overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT gardeniershan overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT andreuteresa overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT morantejuanramon overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT susarreyarcearturo overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode AT floxcristina overcomingvoltagelossesinvanadiumredoxflowbatteriesusingwo3asapositiveelectrode |