Cargando…
Spectro‐Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms
Nanoplastics (NPs), small (<1 μm) polymer particles formed from bulk plastics, are a potential threat to human health and the environment. Orders of magnitude smaller than microplastics (MPs), they might behave differently due to their larger surface area and small size, which allows them to diff...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100025/ https://www.ncbi.nlm.nih.gov/pubmed/36278811 http://dx.doi.org/10.1002/anie.202210494 |
Sumario: | Nanoplastics (NPs), small (<1 μm) polymer particles formed from bulk plastics, are a potential threat to human health and the environment. Orders of magnitude smaller than microplastics (MPs), they might behave differently due to their larger surface area and small size, which allows them to diffuse through organic barriers. However, detecting NPs in the environment and organic matrices has proven to be difficult, as their chemical nature is similar to these matrices. Furthermore, as their size is smaller than the (spatial) detection limit of common analytical tools, they are hard to find and quantify. We highlight different micro‐spectroscopic techniques utilized for NP detection and argue that an analysis procedure should involve both particle imaging and correlative or direct chemical characterization of the same particles or samples. Finally, we highlight methods that can do both simultaneously, but with the downside that large particle numbers and statistics cannot be obtained. |
---|