Cargando…
Explainability and controllability of patient‐specific deep learning with attention‐based augmentation for markerless image‐guided radiotherapy
BACKGROUND: We reported the concept of patient‐specific deep learning (DL) for real‐time markerless tumor segmentation in image‐guided radiotherapy (IGRT). The method was aimed to control the attention of convolutional neural networks (CNNs) by artificial differences in co‐occurrence probability (Co...
Autores principales: | Terunuma, Toshiyuki, Sakae, Takeji, Hu, Yachao, Takei, Hideyuki, Moriya, Shunsuke, Okumura, Toshiyuki, Sakurai, Hideyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100026/ https://www.ncbi.nlm.nih.gov/pubmed/36354286 http://dx.doi.org/10.1002/mp.16095 |
Ejemplares similares
-
Breast radiotherapy with kilovoltage photons and gold nanoparticles as radiosensitizer: An in vitro study
por: Tudda, Alessia, et al.
Publicado: (2021) -
Fast contour propagation for MR‐guided prostate radiotherapy using convolutional neural networks
por: Eppenhof, K.A.J., et al.
Publicado: (2020) -
On the feasibility of cardiac substructure sparing in magnetic resonance imaging guided stereotactic lung radiotherapy
por: van der Pol, Luuk H.G., et al.
Publicado: (2022) -
Implementation and experimental validation of a robust hybrid direct aperture optimization approach for mixed‐beam radiotherapy
por: Heath, Emily, et al.
Publicado: (2021) -
A hybrid 2D/4D‐MRI methodology using simultaneous multislice imaging for radiotherapy guidance
por: Keijnemans, Katrinus, et al.
Publicado: (2022)