Cargando…
Empirical comparison of routinely collected electronic health record data for head and neck cancer‐specific survival in machine‐learnt prognostic models
BACKGROUND: Knowledge of the prognostic factors and performance of machine learning predictive models for 2‐year cancer‐specific survival (CSS) is limited in the head and neck cancer (HNC) population. METHODS: Data from our facilities' oncology information system (OIS) collected for routine pra...
Autores principales: | Kotevski, Damian P., Smee, Robert I., Vajdic, Claire M., Field, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100433/ https://www.ncbi.nlm.nih.gov/pubmed/36369773 http://dx.doi.org/10.1002/hed.27241 |
Ejemplares similares
-
The Utility of Oncology Information Systems for Prognostic Modelling in Head and Neck Cancer
por: Kotevski, Damian P., et al.
Publicado: (2023) -
Validation of the recording of idiopathic pulmonary fibrosis in routinely collected electronic healthcare records in England
por: Morgan, Ann, et al.
Publicado: (2023) -
Machine Learning Approach to Inpatient Violence Risk Assessment Using Routinely Collected Clinical Notes in Electronic Health Records
por: Menger, Vincent, et al.
Publicado: (2019) -
Identifying COPD in routinely collected electronic health records: a systematic scoping review
por: Sivakumaran, Shanya, et al.
Publicado: (2021) -
Validation study of bullous pemphigoid and pemphigus vulgaris recording in routinely collected electronic primary healthcare records in England
por: Persson, Monica S M, et al.
Publicado: (2020)