Cargando…

Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating

[Image: see text] Extreme gradient boosting (XGBoost) is an artificial intelligence algorithm capable of high accuracy and low inference time. The current study applies this XGBoost to the production of platinum nano-film coating through atomic layer deposition (ALD). In order to generate a database...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Sung-Ho, Jeon, Jun-Hyeok, Cho, Seung-Beom, Nacpil, Edric John Cruz, Jeon, Il, Choi, Jae-Boong, Kim, Hyeongkeun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100550/
https://www.ncbi.nlm.nih.gov/pubmed/36947443
http://dx.doi.org/10.1021/acs.langmuir.2c03465
_version_ 1785025302605332480
author Yoon, Sung-Ho
Jeon, Jun-Hyeok
Cho, Seung-Beom
Nacpil, Edric John Cruz
Jeon, Il
Choi, Jae-Boong
Kim, Hyeongkeun
author_facet Yoon, Sung-Ho
Jeon, Jun-Hyeok
Cho, Seung-Beom
Nacpil, Edric John Cruz
Jeon, Il
Choi, Jae-Boong
Kim, Hyeongkeun
author_sort Yoon, Sung-Ho
collection PubMed
description [Image: see text] Extreme gradient boosting (XGBoost) is an artificial intelligence algorithm capable of high accuracy and low inference time. The current study applies this XGBoost to the production of platinum nano-film coating through atomic layer deposition (ALD). In order to generate a database for model development, platinum is coated on α-Al2O3 using a rotary-type ALD equipment. The process is controlled by four parameters: process temperature, stop valve time, precursor pulse time, and reactant pulse time. A total of 625 samples according to different process conditions are obtained. The ALD coating index is used as the Al/Pt component ratio through ICP-AES analysis during postprocessing. The four process parameters serve as the input data and produces the Al/Pt component ratio as the output data. The postprocessed data set is randomly divided into 500 training samples and 125 test samples. XGBoost demonstrates 99.9% accuracy and a coefficient of determination of 0.99. The inference time is lower than that of random forest regression, in addition to a higher prediction safety than that of the light gradient boosting machine.
format Online
Article
Text
id pubmed-10100550
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101005502023-04-14 Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating Yoon, Sung-Ho Jeon, Jun-Hyeok Cho, Seung-Beom Nacpil, Edric John Cruz Jeon, Il Choi, Jae-Boong Kim, Hyeongkeun Langmuir [Image: see text] Extreme gradient boosting (XGBoost) is an artificial intelligence algorithm capable of high accuracy and low inference time. The current study applies this XGBoost to the production of platinum nano-film coating through atomic layer deposition (ALD). In order to generate a database for model development, platinum is coated on α-Al2O3 using a rotary-type ALD equipment. The process is controlled by four parameters: process temperature, stop valve time, precursor pulse time, and reactant pulse time. A total of 625 samples according to different process conditions are obtained. The ALD coating index is used as the Al/Pt component ratio through ICP-AES analysis during postprocessing. The four process parameters serve as the input data and produces the Al/Pt component ratio as the output data. The postprocessed data set is randomly divided into 500 training samples and 125 test samples. XGBoost demonstrates 99.9% accuracy and a coefficient of determination of 0.99. The inference time is lower than that of random forest regression, in addition to a higher prediction safety than that of the light gradient boosting machine. American Chemical Society 2023-03-22 /pmc/articles/PMC10100550/ /pubmed/36947443 http://dx.doi.org/10.1021/acs.langmuir.2c03465 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Yoon, Sung-Ho
Jeon, Jun-Hyeok
Cho, Seung-Beom
Nacpil, Edric John Cruz
Jeon, Il
Choi, Jae-Boong
Kim, Hyeongkeun
Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating
title Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating
title_full Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating
title_fullStr Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating
title_full_unstemmed Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating
title_short Extreme Gradient Boosting to Predict Atomic Layer Deposition for Platinum Nano-Film Coating
title_sort extreme gradient boosting to predict atomic layer deposition for platinum nano-film coating
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100550/
https://www.ncbi.nlm.nih.gov/pubmed/36947443
http://dx.doi.org/10.1021/acs.langmuir.2c03465
work_keys_str_mv AT yoonsungho extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating
AT jeonjunhyeok extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating
AT choseungbeom extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating
AT nacpiledricjohncruz extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating
AT jeonil extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating
AT choijaeboong extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating
AT kimhyeongkeun extremegradientboostingtopredictatomiclayerdepositionforplatinumnanofilmcoating