Cargando…

Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared

[Image: see text] A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumaar, Dhananjeya, Can, Matthias, Portner, Kevin, Weigand, Helena, Yarema, Olesya, Wintersteller, Simon, Schenk, Florian, Boskovic, Darijan, Pharizat, Nathan, Meinert, Robin, Gilshtein, Evgeniia, Romanyuk, Yaroslav, Karvounis, Artemios, Grange, Rachel, Emboras, Alexandros, Wood, Vanessa, Yarema, Maksym
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100560/
https://www.ncbi.nlm.nih.gov/pubmed/36971128
http://dx.doi.org/10.1021/acsnano.3c01187
_version_ 1785025305069486080
author Kumaar, Dhananjeya
Can, Matthias
Portner, Kevin
Weigand, Helena
Yarema, Olesya
Wintersteller, Simon
Schenk, Florian
Boskovic, Darijan
Pharizat, Nathan
Meinert, Robin
Gilshtein, Evgeniia
Romanyuk, Yaroslav
Karvounis, Artemios
Grange, Rachel
Emboras, Alexandros
Wood, Vanessa
Yarema, Maksym
author_facet Kumaar, Dhananjeya
Can, Matthias
Portner, Kevin
Weigand, Helena
Yarema, Olesya
Wintersteller, Simon
Schenk, Florian
Boskovic, Darijan
Pharizat, Nathan
Meinert, Robin
Gilshtein, Evgeniia
Romanyuk, Yaroslav
Karvounis, Artemios
Grange, Rachel
Emboras, Alexandros
Wood, Vanessa
Yarema, Maksym
author_sort Kumaar, Dhananjeya
collection PubMed
description [Image: see text] A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary M(x)Ge(1–x)Te colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn–Ge–Te quantum dots. Full chemical control of Sn–Ge–Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn–Ge–Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn–Ge–Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn–Ge–Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn–Ge–Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices.
format Online
Article
Text
id pubmed-10100560
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101005602023-04-14 Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared Kumaar, Dhananjeya Can, Matthias Portner, Kevin Weigand, Helena Yarema, Olesya Wintersteller, Simon Schenk, Florian Boskovic, Darijan Pharizat, Nathan Meinert, Robin Gilshtein, Evgeniia Romanyuk, Yaroslav Karvounis, Artemios Grange, Rachel Emboras, Alexandros Wood, Vanessa Yarema, Maksym ACS Nano [Image: see text] A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary M(x)Ge(1–x)Te colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn–Ge–Te quantum dots. Full chemical control of Sn–Ge–Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn–Ge–Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn–Ge–Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn–Ge–Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn–Ge–Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices. American Chemical Society 2023-03-27 /pmc/articles/PMC10100560/ /pubmed/36971128 http://dx.doi.org/10.1021/acsnano.3c01187 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Kumaar, Dhananjeya
Can, Matthias
Portner, Kevin
Weigand, Helena
Yarema, Olesya
Wintersteller, Simon
Schenk, Florian
Boskovic, Darijan
Pharizat, Nathan
Meinert, Robin
Gilshtein, Evgeniia
Romanyuk, Yaroslav
Karvounis, Artemios
Grange, Rachel
Emboras, Alexandros
Wood, Vanessa
Yarema, Maksym
Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
title Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
title_full Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
title_fullStr Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
title_full_unstemmed Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
title_short Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
title_sort colloidal ternary telluride quantum dots for tunable phase change optics in the visible and near-infrared
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100560/
https://www.ncbi.nlm.nih.gov/pubmed/36971128
http://dx.doi.org/10.1021/acsnano.3c01187
work_keys_str_mv AT kumaardhananjeya colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT canmatthias colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT portnerkevin colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT weigandhelena colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT yaremaolesya colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT winterstellersimon colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT schenkflorian colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT boskovicdarijan colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT pharizatnathan colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT meinertrobin colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT gilshteinevgeniia colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT romanyukyaroslav colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT karvounisartemios colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT grangerachel colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT emborasalexandros colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT woodvanessa colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared
AT yaremamaksym colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared