Cargando…
Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared
[Image: see text] A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-b...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100560/ https://www.ncbi.nlm.nih.gov/pubmed/36971128 http://dx.doi.org/10.1021/acsnano.3c01187 |
_version_ | 1785025305069486080 |
---|---|
author | Kumaar, Dhananjeya Can, Matthias Portner, Kevin Weigand, Helena Yarema, Olesya Wintersteller, Simon Schenk, Florian Boskovic, Darijan Pharizat, Nathan Meinert, Robin Gilshtein, Evgeniia Romanyuk, Yaroslav Karvounis, Artemios Grange, Rachel Emboras, Alexandros Wood, Vanessa Yarema, Maksym |
author_facet | Kumaar, Dhananjeya Can, Matthias Portner, Kevin Weigand, Helena Yarema, Olesya Wintersteller, Simon Schenk, Florian Boskovic, Darijan Pharizat, Nathan Meinert, Robin Gilshtein, Evgeniia Romanyuk, Yaroslav Karvounis, Artemios Grange, Rachel Emboras, Alexandros Wood, Vanessa Yarema, Maksym |
author_sort | Kumaar, Dhananjeya |
collection | PubMed |
description | [Image: see text] A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary M(x)Ge(1–x)Te colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn–Ge–Te quantum dots. Full chemical control of Sn–Ge–Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn–Ge–Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn–Ge–Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn–Ge–Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn–Ge–Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices. |
format | Online Article Text |
id | pubmed-10100560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101005602023-04-14 Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared Kumaar, Dhananjeya Can, Matthias Portner, Kevin Weigand, Helena Yarema, Olesya Wintersteller, Simon Schenk, Florian Boskovic, Darijan Pharizat, Nathan Meinert, Robin Gilshtein, Evgeniia Romanyuk, Yaroslav Karvounis, Artemios Grange, Rachel Emboras, Alexandros Wood, Vanessa Yarema, Maksym ACS Nano [Image: see text] A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary M(x)Ge(1–x)Te colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn–Ge–Te quantum dots. Full chemical control of Sn–Ge–Te quantum dots permits a systematic study of structural and optical properties of this phase-change nanomaterial. Specifically, we report composition-dependent crystallization temperature for Sn–Ge–Te quantum dots, which is notably higher compared to bulk thin films. This gives the synergistic benefit of tailoring dopant and material dimension to combine the superior aging properties and ultrafast crystallization kinetics of bulk Sn–Ge–Te, while improving memory data retention due to nanoscale size effects. Furthermore, we discover a large reflectivity contrast between amorphous and crystalline Sn–Ge–Te thin films, exceeding 0.7 in the near-IR spectrum region. We utilize these excellent phase-change optical properties of Sn–Ge–Te quantum dots along with liquid-based processability for nonvolatile multicolor images and electro-optical phase-change devices. Our colloidal approach for phase-change applications offers higher customizability of materials, simpler fabrication, and further miniaturization to the sub-10 nm phase-change devices. American Chemical Society 2023-03-27 /pmc/articles/PMC10100560/ /pubmed/36971128 http://dx.doi.org/10.1021/acsnano.3c01187 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Kumaar, Dhananjeya Can, Matthias Portner, Kevin Weigand, Helena Yarema, Olesya Wintersteller, Simon Schenk, Florian Boskovic, Darijan Pharizat, Nathan Meinert, Robin Gilshtein, Evgeniia Romanyuk, Yaroslav Karvounis, Artemios Grange, Rachel Emboras, Alexandros Wood, Vanessa Yarema, Maksym Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared |
title | Colloidal Ternary
Telluride Quantum Dots for Tunable
Phase Change Optics in the Visible and Near-Infrared |
title_full | Colloidal Ternary
Telluride Quantum Dots for Tunable
Phase Change Optics in the Visible and Near-Infrared |
title_fullStr | Colloidal Ternary
Telluride Quantum Dots for Tunable
Phase Change Optics in the Visible and Near-Infrared |
title_full_unstemmed | Colloidal Ternary
Telluride Quantum Dots for Tunable
Phase Change Optics in the Visible and Near-Infrared |
title_short | Colloidal Ternary
Telluride Quantum Dots for Tunable
Phase Change Optics in the Visible and Near-Infrared |
title_sort | colloidal ternary
telluride quantum dots for tunable
phase change optics in the visible and near-infrared |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100560/ https://www.ncbi.nlm.nih.gov/pubmed/36971128 http://dx.doi.org/10.1021/acsnano.3c01187 |
work_keys_str_mv | AT kumaardhananjeya colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT canmatthias colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT portnerkevin colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT weigandhelena colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT yaremaolesya colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT winterstellersimon colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT schenkflorian colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT boskovicdarijan colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT pharizatnathan colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT meinertrobin colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT gilshteinevgeniia colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT romanyukyaroslav colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT karvounisartemios colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT grangerachel colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT emborasalexandros colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT woodvanessa colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared AT yaremamaksym colloidalternarytelluridequantumdotsfortunablephasechangeopticsinthevisibleandnearinfrared |