Cargando…
Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials
[Image: see text] The relaxation of the above-gap (“hot”) carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier–carrier and carrier–phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosy...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100565/ https://www.ncbi.nlm.nih.gov/pubmed/36939330 http://dx.doi.org/10.1021/acsnano.2c12373 |
_version_ | 1785025306345603072 |
---|---|
author | Carwithen, Ben P. Hopper, Thomas R. Ge, Ziyuan Mondal, Navendu Wang, Tong Mazlumian, Rozana Zheng, Xijia Krieg, Franziska Montanarella, Federico Nedelcu, Georgian Kroll, Martin Siguan, Miguel Albaladejo Frost, Jarvist M. Leo, Karl Vaynzof, Yana Bodnarchuk, Maryna I. Kovalenko, Maksym V. Bakulin, Artem A. |
author_facet | Carwithen, Ben P. Hopper, Thomas R. Ge, Ziyuan Mondal, Navendu Wang, Tong Mazlumian, Rozana Zheng, Xijia Krieg, Franziska Montanarella, Federico Nedelcu, Georgian Kroll, Martin Siguan, Miguel Albaladejo Frost, Jarvist M. Leo, Karl Vaynzof, Yana Bodnarchuk, Maryna I. Kovalenko, Maksym V. Bakulin, Artem A. |
author_sort | Carwithen, Ben P. |
collection | PubMed |
description | [Image: see text] The relaxation of the above-gap (“hot”) carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier–carrier and carrier–phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump–push–probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier–carrier, carrier–phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier–phonon and carrier–carrier interactions in LHP optoelectronic materials. |
format | Online Article Text |
id | pubmed-10100565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101005652023-04-14 Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials Carwithen, Ben P. Hopper, Thomas R. Ge, Ziyuan Mondal, Navendu Wang, Tong Mazlumian, Rozana Zheng, Xijia Krieg, Franziska Montanarella, Federico Nedelcu, Georgian Kroll, Martin Siguan, Miguel Albaladejo Frost, Jarvist M. Leo, Karl Vaynzof, Yana Bodnarchuk, Maryna I. Kovalenko, Maksym V. Bakulin, Artem A. ACS Nano [Image: see text] The relaxation of the above-gap (“hot”) carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier–carrier and carrier–phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump–push–probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier–carrier, carrier–phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier–phonon and carrier–carrier interactions in LHP optoelectronic materials. American Chemical Society 2023-03-20 /pmc/articles/PMC10100565/ /pubmed/36939330 http://dx.doi.org/10.1021/acsnano.2c12373 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Carwithen, Ben P. Hopper, Thomas R. Ge, Ziyuan Mondal, Navendu Wang, Tong Mazlumian, Rozana Zheng, Xijia Krieg, Franziska Montanarella, Federico Nedelcu, Georgian Kroll, Martin Siguan, Miguel Albaladejo Frost, Jarvist M. Leo, Karl Vaynzof, Yana Bodnarchuk, Maryna I. Kovalenko, Maksym V. Bakulin, Artem A. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials |
title | Confinement
and Exciton Binding Energy Effects on
Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials |
title_full | Confinement
and Exciton Binding Energy Effects on
Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials |
title_fullStr | Confinement
and Exciton Binding Energy Effects on
Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials |
title_full_unstemmed | Confinement
and Exciton Binding Energy Effects on
Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials |
title_short | Confinement
and Exciton Binding Energy Effects on
Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials |
title_sort | confinement
and exciton binding energy effects on
hot carrier cooling in lead halide perovskite nanomaterials |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100565/ https://www.ncbi.nlm.nih.gov/pubmed/36939330 http://dx.doi.org/10.1021/acsnano.2c12373 |
work_keys_str_mv | AT carwithenbenp confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT hopperthomasr confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT geziyuan confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT mondalnavendu confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT wangtong confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT mazlumianrozana confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT zhengxijia confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT kriegfranziska confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT montanarellafederico confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT nedelcugeorgian confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT krollmartin confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT siguanmiguelalbaladejo confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT frostjarvistm confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT leokarl confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT vaynzofyana confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT bodnarchukmarynai confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT kovalenkomaksymv confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials AT bakulinartema confinementandexcitonbindingenergyeffectsonhotcarriercoolinginleadhalideperovskitenanomaterials |