Cargando…
Network Analysis Reveals the Molecular Bases of Statin Pleiotropy That Vary with Genetic Background
Many approved drugs are pleiotropic: for example, statins, whose main cholesterol-lowering activity is complemented by anticancer and prodiabetogenic mechanisms involving poorly characterized genetic interaction networks. We investigated these using the Saccharomyces cerevisiae genetic model, where...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100750/ https://www.ncbi.nlm.nih.gov/pubmed/36946734 http://dx.doi.org/10.1128/spectrum.04148-22 |
Sumario: | Many approved drugs are pleiotropic: for example, statins, whose main cholesterol-lowering activity is complemented by anticancer and prodiabetogenic mechanisms involving poorly characterized genetic interaction networks. We investigated these using the Saccharomyces cerevisiae genetic model, where most genetic interactions known are limited to the statin-sensitive S288C genetic background. We therefore broadened our approach by investigating gene interactions to include two statin-resistant genetic backgrounds: UWOPS87-2421 and Y55. Networks were functionally focused by selection of HMG1 and BTS1 mevalonate pathway genes for detection of genetic interactions. Networks, multilayered by genetic background, were analyzed for key genes using network centrality (degree, betweenness, and closeness), pathway enrichment, functional community modules, and Gene Ontology. Specifically, we found modification genes related to dysregulated endocytosis and autophagic cell death. To translate results to human cells, human orthologues were searched for other drug targets, thus identifying candidates for synergistic anticancer bioactivity. IMPORTANCE Atorvastatin is a highly successful drug prescribed to lower cholesterol and prevent cardiovascular disease in millions of people. Though much of its effect comes from inhibiting a key enzyme in the cholesterol biosynthetic pathway, genes in this pathway interact with genes in other pathways, resulting in 15% of patients suffering painful muscular side effects and 50% having inadequate responses. Such multigenic complexity may be unraveled using gene networks assembled from overlapping pairs of genes that complement each other. We used the unique power of yeast genetics to construct genome-wide networks specific to atorvastatin bioactivity in three genetic backgrounds to represent the genetic variation and varying response to atorvastatin in human individuals. We then used algorithms to identify key genes and their associated FDA-approved drugs in the networks, which resulted in the distinction of drugs that may synergistically enhance the known anticancer activity of atorvastatin. |
---|