Cargando…

Interplay between Porphyromonas gingivalis Hemophore-Like Protein HmuY and Kgp/RgpA Gingipains Plays a Superior Role in Heme Supply

To acquire heme as a source of iron and protoporphyrin IX, Porphyromonas gingivalis uses gingipains, Hmu, and Hus systems. The aim of this study was to assess the correlation between the production and function of the most important virulence factors of P. gingivalis involved in heme supply, namely,...

Descripción completa

Detalles Bibliográficos
Autores principales: Śmiga, Michał, Ślęzak, Paulina, Wagner, Mateusz, Olczak, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100897/
https://www.ncbi.nlm.nih.gov/pubmed/36752645
http://dx.doi.org/10.1128/spectrum.04593-22
Descripción
Sumario:To acquire heme as a source of iron and protoporphyrin IX, Porphyromonas gingivalis uses gingipains, Hmu, and Hus systems. The aim of this study was to assess the correlation between the production and function of the most important virulence factors of P. gingivalis involved in heme supply, namely, hemophore-like proteins (HmuY and HusA) and gingipains. Respective mutant strains were used, and the expression of genes at the transcript and protein levels, as well as the importance of these genes’ products for virulence potential, was examined. We found that HmuY and Kgp/RgpA gingipains are among the main P. gingivalis virulence factors synergistically engaged in heme supply. Their expression is related mainly when P. gingivalis grows in conditions rich in iron and heme sources, resembling those found in severe periodontitis. We confirmed that HmuY production is strictly dependent on the availability of heme and iron in the external environment, whereas we did not observe such dependence in the production of HusA. Moreover, we found that the HmuY protein can easily sequester heme from the HusA protein. The only correlation in the production of HmuY and HusA hemophore-like proteins could occur in P. gingivalis grown in conditions rich in iron and heme sources, mimicking an environment typical for severe periodontitis. Based on our observations, we suggest that HmuY is the major heme-binding protein produced by P. gingivalis, especially in iron- and heme-depleted conditions, typical for healthy periodontium and the initial stages of infection. The HusA protein could play a supporting role in P. gingivalis heme uptake. IMPORTANCE Altered or disturbed mutualism between oral microbiome members results in dysbiosis with local injuries and subsequently in systemic diseases. Periodontitis belongs to a group of multifactorial infectious diseases, characterized by inflammation and destruction of tooth-supporting tissues. Porphyromonas gingivalis is considered the main etiologic agent and keystone pathogen responsible for developing advanced periodontitis. As part of the infective process, P. gingivalis must acquire heme to survive and multiply at the infection site. Analysis of the mutual relationship between its main virulence factors showed that heme acquisition in P. gingivalis is a complex process in which mainly the Hmu system, with the leading role played by the HmuY hemophore-like protein, and Kgp and RgpA gingipains prefer cooperative interplay. It seems that the Hus system, including HusA hemophore-like protein, could be involved in another, so far uncharacterized, stage of iron and heme supply.