Cargando…

Probiotic Formulation VSL#3 Interacts with Mesenchymal Stromal Cells To Protect Dopaminergic Neurons via Centrally and Peripherally Suppressing NOD-Like Receptor Protein 3 Inflammasome-Mediated Inflammation in Parkinson’s Disease Mice

Systemic immunomodulation is increasingly recognized among the beneficial effects of mesenchymal stromal cells (MSCs) in treatment of Parkinson’s disease (PD), while the underlying mechanism is not fully understood. With the growing popularity of using probiotics as an adjuvant approach in PD treatm...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Liping, Han, Deqiang, Wang, Xingzhe, Chen, Zhiguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100967/
https://www.ncbi.nlm.nih.gov/pubmed/36728426
http://dx.doi.org/10.1128/spectrum.03208-22
Descripción
Sumario:Systemic immunomodulation is increasingly recognized among the beneficial effects of mesenchymal stromal cells (MSCs) in treatment of Parkinson’s disease (PD), while the underlying mechanism is not fully understood. With the growing popularity of using probiotics as an adjuvant approach in PD treatment, concerns about the added effects of probiotics have been raised. In addition to the molecular mechanism mediating the neuroprotective effects of MSCs, the combined effects of a probiotic formulation, VSL#3, and MSC infusion were also evaluated in PD mice. The animals were weekly treated with human MSCs (hMSCs) via the tail vein, VSL#3 via the gastrointestinal tract, or their combination six times. hMSCs, VSL#3 alone, and their combination markedly ameliorated the decreased striatal dopamine content, loss of dopaminergic neurons in the substantia nigra, increased levels of proinflammatory cytokines in serum, as well as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) mRNAs in striatum and peripheral tissues induced by MPTP. Furthermore, hMSCs, VSL#3, and their combination notably downregulated mRNA expression of NOD-like receptor protein 3 (NLRP3) and caspase-1 in brain and peripheral tissues of PD mice. These results suggest that hMSCs, VSL#3, and their combination prevent neurodegenerative changes in PD mice via anti-inflammatory activities in both the central and peripheral systems, possibly through suppressing the NLRP3 inflammasome. Moreover, two-way analysis of variance (ANOVA) indicated that VSL#3 interacts with hMSCs to attenuate neurodegeneration and inhibit NLRP3 inflammasome-mediated inflammation without altering the effects of hMSCs. Major findings of our study support the usage of probiotic formulation VSL#3 as an adjuvant therapy to hMSC infusion in PD treatment. IMPORTANCE This study provides evidence for the neuroprotective activities of human umbilical cord MSCs from the aspect of anti-inflammation actions. hMSCs inhibit the NLRP3 inflammasome and MPTP-induced inflammation in both brain and periphery to relieve the degenerative changes in dopaminergic neurons in PD mice. Furthermore, as an additional therapeutic agent, probiotic formulation VSL#3 interacts with hMSCs in suppressing the NLRP3 inflammasome as well as the central and peripheral anti-inflammatory effects to exert neuroprotective actions in PD mice without altering the actions of hMSCs, suggesting the potential of VSL#3 as an adjuvant therapy in PD treatment. The findings of the present study give a further understanding of the anti-inflammatory activity and the molecular mechanism for the beneficial effects of MSCs as well as the potential application of probiotic formulation as an adjuvant approach to MSC therapy in PD treatment.