Cargando…

Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms

Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010....

Descripción completa

Detalles Bibliográficos
Autores principales: Antezana, Brenda S., Lohsen, Sarah, Wu, Xueqing, Vidal, Jorge E., Tzeng, Yih-Ling, Stephens, David S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101023/
https://www.ncbi.nlm.nih.gov/pubmed/36912669
http://dx.doi.org/10.1128/spectrum.03759-22
_version_ 1785025418234953728
author Antezana, Brenda S.
Lohsen, Sarah
Wu, Xueqing
Vidal, Jorge E.
Tzeng, Yih-Ling
Stephens, David S.
author_facet Antezana, Brenda S.
Lohsen, Sarah
Wu, Xueqing
Vidal, Jorge E.
Tzeng, Yih-Ling
Stephens, David S.
author_sort Antezana, Brenda S.
collection PubMed
description Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10(−7). GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10(−4) in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10(−7)). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10(−4) in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance.
format Online
Article
Text
id pubmed-10101023
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-101010232023-04-14 Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms Antezana, Brenda S. Lohsen, Sarah Wu, Xueqing Vidal, Jorge E. Tzeng, Yih-Ling Stephens, David S. Microbiol Spectr Research Article Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10(−7). GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10(−4) in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10(−7)). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10(−4) in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance. American Society for Microbiology 2023-03-13 /pmc/articles/PMC10101023/ /pubmed/36912669 http://dx.doi.org/10.1128/spectrum.03759-22 Text en Copyright © 2023 Antezana et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Antezana, Brenda S.
Lohsen, Sarah
Wu, Xueqing
Vidal, Jorge E.
Tzeng, Yih-Ling
Stephens, David S.
Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms
title Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms
title_full Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms
title_fullStr Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms
title_full_unstemmed Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms
title_short Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms
title_sort dissemination of tn916-related integrative and conjugative elements in streptococcus pneumoniae occurs by transformation and homologous recombination in nasopharyngeal biofilms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101023/
https://www.ncbi.nlm.nih.gov/pubmed/36912669
http://dx.doi.org/10.1128/spectrum.03759-22
work_keys_str_mv AT antezanabrendas disseminationoftn916relatedintegrativeandconjugativeelementsinstreptococcuspneumoniaeoccursbytransformationandhomologousrecombinationinnasopharyngealbiofilms
AT lohsensarah disseminationoftn916relatedintegrativeandconjugativeelementsinstreptococcuspneumoniaeoccursbytransformationandhomologousrecombinationinnasopharyngealbiofilms
AT wuxueqing disseminationoftn916relatedintegrativeandconjugativeelementsinstreptococcuspneumoniaeoccursbytransformationandhomologousrecombinationinnasopharyngealbiofilms
AT vidaljorgee disseminationoftn916relatedintegrativeandconjugativeelementsinstreptococcuspneumoniaeoccursbytransformationandhomologousrecombinationinnasopharyngealbiofilms
AT tzengyihling disseminationoftn916relatedintegrativeandconjugativeelementsinstreptococcuspneumoniaeoccursbytransformationandhomologousrecombinationinnasopharyngealbiofilms
AT stephensdavids disseminationoftn916relatedintegrativeandconjugativeelementsinstreptococcuspneumoniaeoccursbytransformationandhomologousrecombinationinnasopharyngealbiofilms