Cargando…
Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora
Bacillus thuringiensis is widely used as a biopesticide, and its crystal protein expressed in transgenic crops has been successfully used for the management of insect pests. However, whether the midgut microbiota contribute to the Bt insecticidal mechanism remains controversial. We previously demons...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101071/ https://www.ncbi.nlm.nih.gov/pubmed/36976001 http://dx.doi.org/10.1128/spectrum.05049-22 |
_version_ | 1785025428154482688 |
---|---|
author | Lei, Xiaoyu Zhang, Fengjuan Zhang, Jiang |
author_facet | Lei, Xiaoyu Zhang, Fengjuan Zhang, Jiang |
author_sort | Lei, Xiaoyu |
collection | PubMed |
description | Bacillus thuringiensis is widely used as a biopesticide, and its crystal protein expressed in transgenic crops has been successfully used for the management of insect pests. However, whether the midgut microbiota contribute to the Bt insecticidal mechanism remains controversial. We previously demonstrated that transplastomic poplar plants expressing Bt Cry3Bb are highly lethal to willow leaf beetle (Plagiodera versicolora), one of the major pests causing severe damage to Salicaceae plants such as willows and poplars. Here, we demonstrate that feeding poplar leaves expressing Cry3Bb to nonaxenic P. versicolora larvae leads to significantly accelerated mortality, and overgrowth and dysbiosis of the gut microbiota, compared with axenic larvae. Corroborating work done with Lepidopteran insects, plastid-expressed Cry3Bb can cause the lysis of the beetle's intestinal cells, lead to the entry of intestinal bacteria into the body cavity, and thus cause the dynamic changes in the flora of the midgut and blood cavity in P. versicolora. Reintroduction of Pseudomonas putida, a gut bacterium of P. versicolora, into axenic P. versicolora larvae further enhances mortality upon feeding on Cry3Bb-expressing poplar. Our results indicate the important contribution of host gut microbiota in promoting the B. thuringiensis crystal protein insecticidal activity and provide new insights into the mechanism of pest control by Bt-transplastomic approaches. IMPORTANCE The contribution of gut microbiota to Bacillus thuringiensis Cry3Bb insecticidal activity in a leaf beetle was demonstrated using transplastomic poplar plants, providing a potential new approach to improve the efficiency of plastid transformation technology for pest control by expression of Bt toxins. |
format | Online Article Text |
id | pubmed-10101071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101010712023-04-14 Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora Lei, Xiaoyu Zhang, Fengjuan Zhang, Jiang Microbiol Spectr Research Article Bacillus thuringiensis is widely used as a biopesticide, and its crystal protein expressed in transgenic crops has been successfully used for the management of insect pests. However, whether the midgut microbiota contribute to the Bt insecticidal mechanism remains controversial. We previously demonstrated that transplastomic poplar plants expressing Bt Cry3Bb are highly lethal to willow leaf beetle (Plagiodera versicolora), one of the major pests causing severe damage to Salicaceae plants such as willows and poplars. Here, we demonstrate that feeding poplar leaves expressing Cry3Bb to nonaxenic P. versicolora larvae leads to significantly accelerated mortality, and overgrowth and dysbiosis of the gut microbiota, compared with axenic larvae. Corroborating work done with Lepidopteran insects, plastid-expressed Cry3Bb can cause the lysis of the beetle's intestinal cells, lead to the entry of intestinal bacteria into the body cavity, and thus cause the dynamic changes in the flora of the midgut and blood cavity in P. versicolora. Reintroduction of Pseudomonas putida, a gut bacterium of P. versicolora, into axenic P. versicolora larvae further enhances mortality upon feeding on Cry3Bb-expressing poplar. Our results indicate the important contribution of host gut microbiota in promoting the B. thuringiensis crystal protein insecticidal activity and provide new insights into the mechanism of pest control by Bt-transplastomic approaches. IMPORTANCE The contribution of gut microbiota to Bacillus thuringiensis Cry3Bb insecticidal activity in a leaf beetle was demonstrated using transplastomic poplar plants, providing a potential new approach to improve the efficiency of plastid transformation technology for pest control by expression of Bt toxins. American Society for Microbiology 2023-03-28 /pmc/articles/PMC10101071/ /pubmed/36976001 http://dx.doi.org/10.1128/spectrum.05049-22 Text en Copyright © 2023 Lei et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Lei, Xiaoyu Zhang, Fengjuan Zhang, Jiang Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora |
title | Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora |
title_full | Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora |
title_fullStr | Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora |
title_full_unstemmed | Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora |
title_short | Gut Microbiota Accelerate the Insecticidal Activity of Plastid-Expressed Bacillus thuringiensis Cry3Bb to a Leaf Beetle, Plagiodera versicolora |
title_sort | gut microbiota accelerate the insecticidal activity of plastid-expressed bacillus thuringiensis cry3bb to a leaf beetle, plagiodera versicolora |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101071/ https://www.ncbi.nlm.nih.gov/pubmed/36976001 http://dx.doi.org/10.1128/spectrum.05049-22 |
work_keys_str_mv | AT leixiaoyu gutmicrobiotaacceleratetheinsecticidalactivityofplastidexpressedbacillusthuringiensiscry3bbtoaleafbeetleplagioderaversicolora AT zhangfengjuan gutmicrobiotaacceleratetheinsecticidalactivityofplastidexpressedbacillusthuringiensiscry3bbtoaleafbeetleplagioderaversicolora AT zhangjiang gutmicrobiotaacceleratetheinsecticidalactivityofplastidexpressedbacillusthuringiensiscry3bbtoaleafbeetleplagioderaversicolora |