Cargando…
Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling
Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101146/ https://www.ncbi.nlm.nih.gov/pubmed/36728436 http://dx.doi.org/10.1128/spectrum.01237-22 |
_version_ | 1785025447441989632 |
---|---|
author | Li, Shen Yang, Li Li, Yanling Yue, Wenxing Xin, Shuyu Li, Jing Long, Sijing Zhang, Wentao Cao, Pengfei Lu, Jianhong |
author_facet | Li, Shen Yang, Li Li, Yanling Yue, Wenxing Xin, Shuyu Li, Jing Long, Sijing Zhang, Wentao Cao, Pengfei Lu, Jianhong |
author_sort | Li, Shen |
collection | PubMed |
description | Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis. |
format | Online Article Text |
id | pubmed-10101146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101011462023-04-14 Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling Li, Shen Yang, Li Li, Yanling Yue, Wenxing Xin, Shuyu Li, Jing Long, Sijing Zhang, Wentao Cao, Pengfei Lu, Jianhong Microbiol Spectr Research Article Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis. American Society for Microbiology 2023-02-02 /pmc/articles/PMC10101146/ /pubmed/36728436 http://dx.doi.org/10.1128/spectrum.01237-22 Text en Copyright © 2023 Li et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Li, Shen Yang, Li Li, Yanling Yue, Wenxing Xin, Shuyu Li, Jing Long, Sijing Zhang, Wentao Cao, Pengfei Lu, Jianhong Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling |
title | Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling |
title_full | Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling |
title_fullStr | Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling |
title_full_unstemmed | Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling |
title_short | Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling |
title_sort | epstein-barr virus synergizes with brd7 to conquer c-myc-mediated viral latency maintenance via chromatin remodeling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101146/ https://www.ncbi.nlm.nih.gov/pubmed/36728436 http://dx.doi.org/10.1128/spectrum.01237-22 |
work_keys_str_mv | AT lishen epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT yangli epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT liyanling epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT yuewenxing epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT xinshuyu epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT lijing epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT longsijing epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT zhangwentao epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT caopengfei epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling AT lujianhong epsteinbarrvirussynergizeswithbrd7toconquercmycmediatedvirallatencymaintenanceviachromatinremodeling |