Cargando…

Identifying the Novel Gut Microbial Metabolite Contributing to Metabolic Syndrome in Children Based on Integrative Analyses of Microbiome-Metabolome Signatures

The pathogenesis of gut microbiota and their metabolites in the development of metabolic syndrome (MS) remains unclear. This study aimed to evaluate the signatures of gut microbiota and metabolites as well as their functions in obese children with MS. A case-control study was conducted based on 23 M...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Jia, Dai, Wen, Pan, Xiongfeng, Zhong, Yan, Xu, Ningan, Ye, Ping, Wang, Jie, Li, Jina, Yang, Fei, Luo, Jiayou, Luo, Miyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101147/
https://www.ncbi.nlm.nih.gov/pubmed/36794949
http://dx.doi.org/10.1128/spectrum.03771-22
Descripción
Sumario:The pathogenesis of gut microbiota and their metabolites in the development of metabolic syndrome (MS) remains unclear. This study aimed to evaluate the signatures of gut microbiota and metabolites as well as their functions in obese children with MS. A case-control study was conducted based on 23 MS children and 31 obese controls. The gut microbiome and metabolome were measured using 16S rRNA gene amplicon sequencing and liquid chromatography-mass spectrometry. An integrative analysis was conducted, combining the results of the gut microbiome and metabolome with extensive clinical indicators. The biological functions of the candidate microbial metabolites were validated in vitro. We identified 9 microbiota and 26 metabolites that were significantly different from the MS and the control group. The clinical indicators of MS were correlated with the altered microbiota Lachnoclostridium, Dialister, and Bacteroides, as well as with the altered metabolites all-trans-13,14-dihydroretinol, DL-dipalmitoylphosphatidylcholine (DPPC), LPC 24: 1, PC (14:1e/10:0), and 4-phenyl-3-buten-2-one, etc. The association network analysis further identified three MS-linked metabolites, including all-trans-13,14-dihydroretinol, DPPC, and 4-phenyl-3-buten-2-one, that were significantly correlated with the altered microbiota. Bio-functional validation showed that all-trans-13, 14-dihydroretinol could significantly upregulate the expression of lipid synthesis genes and inflammatory genes. This study identified a new biomarker that may contribute to MS development. These findings provided new insights regarding the development of efficient therapeutic strategies for MS. IMPORTANCE Metabolic syndrome (MS) has become a health concern worldwide. Gut microbiota and metabolites play an important role in human health. We first endeavored to comprehensively analyze the microbiome and metabolome signatures in obese children and found the novel microbial metabolites in MS. We further validated the biological functions of the metabolites in vitro and illustrated the effects of the microbial metabolites on lipid synthesis and inflammation. The microbial metabolite all-trans-13, 14-dihydroretinol may be a new biomarker in the pathogenesis of MS, especially in obese children. These findings were not available in previous studies, and they provide new insights regarding the management of metabolic syndrome.