Cargando…
A new iterative initialization of EM algorithm for Gaussian mixture models
BACKGROUND: The expectation maximization (EM) algorithm is a common tool for estimating the parameters of Gaussian mixture models (GMM). However, it is highly sensitive to initial value and easily gets trapped in a local optimum. METHOD: To address these problems, a new iterative method of EM initia...
Autores principales: | You, Jie, Li, Zhaoxuan, Du, Junli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101421/ https://www.ncbi.nlm.nih.gov/pubmed/37053163 http://dx.doi.org/10.1371/journal.pone.0284114 |
Ejemplares similares
-
Diffusion-Based EM Algorithm for Distributed Estimation of Gaussian Mixtures in Wireless Sensor Networks
por: Weng, Yang, et al.
Publicado: (2011) -
Iterative Diffusion-Based Distributed Cubature Gaussian Mixture Filter for Multisensor Estimation
por: Jia, Bin, et al.
Publicado: (2016) -
Combined Gaussian Mixture Model and Pathfinder Algorithm for Data Clustering
por: Huang, Huajuan, et al.
Publicado: (2023) -
Improving Resolution and Resolvability of Single Particle CryoEM Structures using Gaussian Mixture Models
por: Chen, Muyuan, et al.
Publicado: (2023) -
Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures
por: Lerch, Florian, et al.
Publicado: (2020)