Cargando…

Abdominal imaging associates body composition with COVID-19 severity

The main drivers of COVID-19 disease severity and the impact of COVID-19 on long-term health after recovery are yet to be fully understood. Medical imaging studies investigating COVID-19 to date have mostly been limited to small datasets and post-hoc analyses of severe cases. The UK Biobank recruite...

Descripción completa

Detalles Bibliográficos
Autores principales: Basty, Nicolas, Sorokin, Elena P., Thanaj, Marjola, Srinivasan, Ramprakash, Whitcher, Brandon, Bell, Jimmy D., Cule, Madeleine, Thomas, E. Louise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101472/
https://www.ncbi.nlm.nih.gov/pubmed/37053189
http://dx.doi.org/10.1371/journal.pone.0283506
Descripción
Sumario:The main drivers of COVID-19 disease severity and the impact of COVID-19 on long-term health after recovery are yet to be fully understood. Medical imaging studies investigating COVID-19 to date have mostly been limited to small datasets and post-hoc analyses of severe cases. The UK Biobank recruited recovered SARS-CoV-2 positive individuals (n = 967) and matched controls (n = 913) who were extensively imaged prior to the pandemic and underwent follow-up scanning. In this study, we investigated longitudinal changes in body composition, as well as the associations of pre-pandemic image-derived phenotypes with COVID-19 severity. Our longitudinal analysis, in a population of mostly mild cases, associated a decrease in lung volume with SARS-CoV-2 positivity. We also observed that increased visceral adipose tissue and liver fat, and reduced muscle volume, prior to COVID-19, were associated with COVID-19 disease severity. Finally, we trained a machine classifier with demographic, anthropometric and imaging traits, and showed that visceral fat, liver fat and muscle volume have prognostic value for COVID-19 disease severity beyond the standard demographic and anthropometric measurements. This combination of image-derived phenotypes from abdominal MRI scans and ensemble learning to predict risk may have future clinical utility in identifying populations at-risk for a severe COVID-19 outcome.