Cargando…
Graph-based machine learning improves just-in-time defect prediction
The increasing complexity of today’s software requires the contribution of thousands of developers. This complex collaboration structure makes developers more likely to introduce defect-prone changes that lead to software faults. Determining when these defect-prone changes are introduced has proven...
Autores principales: | Bryan, Jonathan, Moriano, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101485/ https://www.ncbi.nlm.nih.gov/pubmed/37053155 http://dx.doi.org/10.1371/journal.pone.0284077 |
Ejemplares similares
-
Effort-aware and just-in-time defect prediction with neural network
por: Qiao, Lei, et al.
Publicado: (2019) -
Graph-Powered Analytics and Machine Learning with TigerGraph
por: Lee, Victor, et al.
Publicado: (2022) -
NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics
por: Said, Anwar, et al.
Publicado: (2023) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
MultiGML: Multimodal graph machine learning for prediction of adverse drug events
por: Krix, Sophia, et al.
Publicado: (2023)