Cargando…
Development and validation of risk prediction models for large for gestational age infants using logistic regression and two machine learning algorithms
BACKGROUND: Large for gestational age (LGA) is one of the adverse outcomes during pregnancy that endangers the life and health of mothers and offspring. We aimed to establish prediction models for LGA at late pregnancy. METHODS: Data were obtained from an established Chinese pregnant women cohort of...
Autores principales: | Wang, Ning, Guo, Haonan, Jing, Yingyu, Zhang, Yifan, Sun, Bo, Pan, Xingyan, Chen, Huan, Xu, Jing, Wang, Mengjun, Chen, Xi, Song, Lin, Cui, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Publishing Asia Pty Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101839/ https://www.ncbi.nlm.nih.gov/pubmed/36890429 http://dx.doi.org/10.1111/1753-0407.13375 |
Ejemplares similares
-
Development and Validation of Risk Prediction Models for Gestational Diabetes Mellitus Using Four Different Methods
por: Wang, Ning, et al.
Publicado: (2022) -
Association of Elevated Plasma FGF21 and Activated FGF21 Signaling in Visceral White Adipose Tissue and Improved Insulin Sensitivity in Gestational Diabetes Mellitus Subtype: A Case-Control Study
por: Wang, Ning, et al.
Publicado: (2021) -
Delirium misdiagnosis risk in psychiatry: a machine learning-logistic regression predictive algorithm
por: Hercus, Catherine, et al.
Publicado: (2020) -
Logistic Regression for Machine Learning in Process Tomography
por: Rymarczyk, Tomasz, et al.
Publicado: (2019) -
Efficacy and safety of hypoglycemic agents on gestational diabetes mellitus in women: A Bayesian network analysis of randomized controlled trials
por: Wang, Ting, et al.
Publicado: (2022)