Cargando…
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)
A reliable and accurate diagnosis and identification system is required to prevent and manage tea leaf diseases. Tea leaf diseases are detected manually, increasing time and affecting yield quality and productivity. This study aims to present an artificial intelligence-based solution to the problem...
Autores principales: | Soeb, Md. Janibul Alam, Jubayer, Md. Fahad, Tarin, Tahmina Akanjee, Al Mamun, Muhammad Rashed, Ruhad, Fahim Mahafuz, Parven, Aney, Mubarak, Nabisab Mujawar, Karri, Soni Lanka, Meftaul, Islam Md. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102080/ https://www.ncbi.nlm.nih.gov/pubmed/37055480 http://dx.doi.org/10.1038/s41598-023-33270-4 |
Ejemplares similares
-
Correction to: Degradation of four pesticides in five urban landscape soils: human and environmental health risk assessment
por: Meftaul, Islam Md, et al.
Publicado: (2022) -
Degradation of four pesticides in five urban landscape soils: human and environmental health risk assessment
por: Meftaul, Islam Md, et al.
Publicado: (2022) -
COVID-19 knowledge, attitude, practices, and associated factors among Bangladeshi food handlers from various food industries
por: Jubayer, Md Fahad, et al.
Publicado: (2023) -
Detection of mold on the food surface using YOLOv5
por: Jubayer, Fahad, et al.
Publicado: (2021) -
Response to coronavirus disease 2019: Case study of one baking industry in Dhaka, Bangladesh
por: Jubayer, Md Fahad, et al.
Publicado: (2020)