Cargando…
Neural networks determination of material elastic constants and structures in nematic complex fluids
Supervised machine learning and artificial neural network approaches can allow for the determination of selected material parameters or structures from a measurable signal without knowing the exact mathematical relationship between them. Here, we demonstrate that material nematic elastic constants a...
Autores principales: | Zaplotnik, Jaka, Pišljar, Jaka, Škarabot, Miha, Ravnik, Miha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102156/ https://www.ncbi.nlm.nih.gov/pubmed/37055564 http://dx.doi.org/10.1038/s41598-023-33134-x |
Ejemplares similares
-
Photonic eigenmodes and transmittance of finite-length 1D cholesteric liquid crystal resonators
por: Zaplotnik, Jaka, et al.
Publicado: (2023) -
Field generated nematic microflows via backflow mechanism
por: Kos, Žiga, et al.
Publicado: (2020) -
Janus Nematic Colloids with Designable Valance
por: Čopar, Simon, et al.
Publicado: (2014) -
Optical properties of metamaterial split ring nematic colloids
por: Pusovnik, Anja, et al.
Publicado: (2019) -
Active nematic emulsions
por: Guillamat, Pau, et al.
Publicado: (2018)