Cargando…

Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients

Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Mul...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Pei-Chen, Lee, Tsung-Hua, Kuo, Kun-Chi, Su, Fang-Yi, Lee, Tsung-Lu Michael, Marostica, Eliana, Ugai, Tomotaka, Zhao, Melissa, Lau, Mai Chan, Väyrynen, Juha P., Giannakis, Marios, Takashima, Yasutoshi, Kahaki, Seyed Mousavi, Wu, Kana, Song, Mingyang, Meyerhardt, Jeffrey A., Chan, Andrew T., Chiang, Jung-Hsien, Nowak, Jonathan, Ogino, Shuji, Yu, Kun-Hsing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102208/
https://www.ncbi.nlm.nih.gov/pubmed/37055393
http://dx.doi.org/10.1038/s41467-023-37179-4
_version_ 1785025651037700096
author Tsai, Pei-Chen
Lee, Tsung-Hua
Kuo, Kun-Chi
Su, Fang-Yi
Lee, Tsung-Lu Michael
Marostica, Eliana
Ugai, Tomotaka
Zhao, Melissa
Lau, Mai Chan
Väyrynen, Juha P.
Giannakis, Marios
Takashima, Yasutoshi
Kahaki, Seyed Mousavi
Wu, Kana
Song, Mingyang
Meyerhardt, Jeffrey A.
Chan, Andrew T.
Chiang, Jung-Hsien
Nowak, Jonathan
Ogino, Shuji
Yu, Kun-Hsing
author_facet Tsai, Pei-Chen
Lee, Tsung-Hua
Kuo, Kun-Chi
Su, Fang-Yi
Lee, Tsung-Lu Michael
Marostica, Eliana
Ugai, Tomotaka
Zhao, Melissa
Lau, Mai Chan
Väyrynen, Juha P.
Giannakis, Marios
Takashima, Yasutoshi
Kahaki, Seyed Mousavi
Wu, Kana
Song, Mingyang
Meyerhardt, Jeffrey A.
Chan, Andrew T.
Chiang, Jung-Hsien
Nowak, Jonathan
Ogino, Shuji
Yu, Kun-Hsing
author_sort Tsai, Pei-Chen
collection PubMed
description Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients’ histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients.
format Online
Article
Text
id pubmed-10102208
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101022082023-04-15 Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients Tsai, Pei-Chen Lee, Tsung-Hua Kuo, Kun-Chi Su, Fang-Yi Lee, Tsung-Lu Michael Marostica, Eliana Ugai, Tomotaka Zhao, Melissa Lau, Mai Chan Väyrynen, Juha P. Giannakis, Marios Takashima, Yasutoshi Kahaki, Seyed Mousavi Wu, Kana Song, Mingyang Meyerhardt, Jeffrey A. Chan, Andrew T. Chiang, Jung-Hsien Nowak, Jonathan Ogino, Shuji Yu, Kun-Hsing Nat Commun Article Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients’ histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients. Nature Publishing Group UK 2023-04-13 /pmc/articles/PMC10102208/ /pubmed/37055393 http://dx.doi.org/10.1038/s41467-023-37179-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Tsai, Pei-Chen
Lee, Tsung-Hua
Kuo, Kun-Chi
Su, Fang-Yi
Lee, Tsung-Lu Michael
Marostica, Eliana
Ugai, Tomotaka
Zhao, Melissa
Lau, Mai Chan
Väyrynen, Juha P.
Giannakis, Marios
Takashima, Yasutoshi
Kahaki, Seyed Mousavi
Wu, Kana
Song, Mingyang
Meyerhardt, Jeffrey A.
Chan, Andrew T.
Chiang, Jung-Hsien
Nowak, Jonathan
Ogino, Shuji
Yu, Kun-Hsing
Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
title Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
title_full Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
title_fullStr Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
title_full_unstemmed Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
title_short Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
title_sort histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102208/
https://www.ncbi.nlm.nih.gov/pubmed/37055393
http://dx.doi.org/10.1038/s41467-023-37179-4
work_keys_str_mv AT tsaipeichen histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT leetsunghua histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT kuokunchi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT sufangyi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT leetsunglumichael histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT marosticaeliana histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT ugaitomotaka histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT zhaomelissa histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT laumaichan histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT vayrynenjuhap histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT giannakismarios histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT takashimayasutoshi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT kahakiseyedmousavi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT wukana histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT songmingyang histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT meyerhardtjeffreya histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT chanandrewt histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT chiangjunghsien histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT nowakjonathan histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT oginoshuji histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients
AT yukunhsing histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients