Cargando…
Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Mul...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102208/ https://www.ncbi.nlm.nih.gov/pubmed/37055393 http://dx.doi.org/10.1038/s41467-023-37179-4 |
_version_ | 1785025651037700096 |
---|---|
author | Tsai, Pei-Chen Lee, Tsung-Hua Kuo, Kun-Chi Su, Fang-Yi Lee, Tsung-Lu Michael Marostica, Eliana Ugai, Tomotaka Zhao, Melissa Lau, Mai Chan Väyrynen, Juha P. Giannakis, Marios Takashima, Yasutoshi Kahaki, Seyed Mousavi Wu, Kana Song, Mingyang Meyerhardt, Jeffrey A. Chan, Andrew T. Chiang, Jung-Hsien Nowak, Jonathan Ogino, Shuji Yu, Kun-Hsing |
author_facet | Tsai, Pei-Chen Lee, Tsung-Hua Kuo, Kun-Chi Su, Fang-Yi Lee, Tsung-Lu Michael Marostica, Eliana Ugai, Tomotaka Zhao, Melissa Lau, Mai Chan Väyrynen, Juha P. Giannakis, Marios Takashima, Yasutoshi Kahaki, Seyed Mousavi Wu, Kana Song, Mingyang Meyerhardt, Jeffrey A. Chan, Andrew T. Chiang, Jung-Hsien Nowak, Jonathan Ogino, Shuji Yu, Kun-Hsing |
author_sort | Tsai, Pei-Chen |
collection | PubMed |
description | Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients’ histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients. |
format | Online Article Text |
id | pubmed-10102208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101022082023-04-15 Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients Tsai, Pei-Chen Lee, Tsung-Hua Kuo, Kun-Chi Su, Fang-Yi Lee, Tsung-Lu Michael Marostica, Eliana Ugai, Tomotaka Zhao, Melissa Lau, Mai Chan Väyrynen, Juha P. Giannakis, Marios Takashima, Yasutoshi Kahaki, Seyed Mousavi Wu, Kana Song, Mingyang Meyerhardt, Jeffrey A. Chan, Andrew T. Chiang, Jung-Hsien Nowak, Jonathan Ogino, Shuji Yu, Kun-Hsing Nat Commun Article Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients’ histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients. Nature Publishing Group UK 2023-04-13 /pmc/articles/PMC10102208/ /pubmed/37055393 http://dx.doi.org/10.1038/s41467-023-37179-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Tsai, Pei-Chen Lee, Tsung-Hua Kuo, Kun-Chi Su, Fang-Yi Lee, Tsung-Lu Michael Marostica, Eliana Ugai, Tomotaka Zhao, Melissa Lau, Mai Chan Väyrynen, Juha P. Giannakis, Marios Takashima, Yasutoshi Kahaki, Seyed Mousavi Wu, Kana Song, Mingyang Meyerhardt, Jeffrey A. Chan, Andrew T. Chiang, Jung-Hsien Nowak, Jonathan Ogino, Shuji Yu, Kun-Hsing Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
title | Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
title_full | Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
title_fullStr | Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
title_full_unstemmed | Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
title_short | Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
title_sort | histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102208/ https://www.ncbi.nlm.nih.gov/pubmed/37055393 http://dx.doi.org/10.1038/s41467-023-37179-4 |
work_keys_str_mv | AT tsaipeichen histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT leetsunghua histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT kuokunchi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT sufangyi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT leetsunglumichael histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT marosticaeliana histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT ugaitomotaka histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT zhaomelissa histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT laumaichan histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT vayrynenjuhap histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT giannakismarios histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT takashimayasutoshi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT kahakiseyedmousavi histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT wukana histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT songmingyang histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT meyerhardtjeffreya histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT chanandrewt histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT chiangjunghsien histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT nowakjonathan histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT oginoshuji histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients AT yukunhsing histopathologyimagespredictmultiomicsaberrationsandprognosesincolorectalcancerpatients |