Cargando…
Deep learning synthesis of cone-beam computed tomography from zero echo time magnetic resonance imaging
Cone-beam computed tomography (CBCT) produces high-resolution of hard tissue even in small voxel size, but the process is associated with radiation exposure and poor soft tissue imaging. Thus, we synthesized a CBCT image from the magnetic resonance imaging (MRI), using deep learning and to assess it...
Autores principales: | Choi, Hyeyeon, Yun, Jong Pil, Lee, Ari, Han, Sang-Sun, Kim, Sang Woo, Lee, Chena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102229/ https://www.ncbi.nlm.nih.gov/pubmed/37055501 http://dx.doi.org/10.1038/s41598-023-33288-8 |
Ejemplares similares
-
Quantitative analysis of metal artifact reduction using the auto-edge counting method in cone-beam computed tomography
por: Kim, Young Hyun, et al.
Publicado: (2020) -
Imaging feature of cosmetic fillers in cone-beam computed tomography and its dental consideration
por: Lee, Chena, et al.
Publicado: (2022) -
Automatic analysis algorithm for acquiring standard dental and mandibular shape data using cone-beam computed tomography
por: Hwang, Jae Joon, et al.
Publicado: (2018) -
Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images
por: Choi, Hanseung, et al.
Publicado: (2022) -
Dose assessment in dental cone-beam computed tomography: Comparison of optically stimulated luminescence dosimetry with Monte Carlo method
por: Lee, Chena, et al.
Publicado: (2020)