Cargando…
Generalization of vision pre-trained models for histopathology
Out-of-distribution (OOD) generalization, especially for medical setups, is a key challenge in modern machine learning which has only recently received much attention. We investigate how different convolutional pre-trained models perform on OOD test data—that is data from domains that have not been...
Autores principales: | Sikaroudi, Milad, Hosseini, Maryam, Gonzalez, Ricardo, Rahnamayan, Shahryar, Tizhoosh, H. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102232/ https://www.ncbi.nlm.nih.gov/pubmed/37055519 http://dx.doi.org/10.1038/s41598-023-33348-z |
Ejemplares similares
-
Bias reduction in representation of histopathology images using deep feature selection
por: Asilian Bidgoli, Azam, et al.
Publicado: (2022) -
Learning to predict RNA sequence expressions from whole slide images with applications for search and classification
por: Alsaafin, Areej, et al.
Publicado: (2023) -
Biased data, biased AI: deep networks predict the acquisition site of TCGA images
por: Dehkharghanian, Taher, et al.
Publicado: (2023) -
An evolutionary decomposition-based multi-objective feature selection for multi-label classification
por: Asilian Bidgoli, Azam, et al.
Publicado: (2020) -
Heterogeneous Differential Evolution for Numerical Optimization
por: Wang, Hui, et al.
Publicado: (2014)