Cargando…
Self-supervised zero-shot dehazing network based on dark channel prior
Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark...
Autores principales: | Xiao, Xinjie, Ren, Yuanhong, Li, Zhiwei, Zhang, Nannan, Zhou, Wuneng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102283/ https://www.ncbi.nlm.nih.gov/pubmed/37055622 http://dx.doi.org/10.1007/s12200-023-00062-7 |
Ejemplares similares
-
A Multi-Scale Dehazing Network with Dark Channel Priors
por: Yang, Guoliang, et al.
Publicado: (2023) -
Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing
por: Xu, Yijun, et al.
Publicado: (2023) -
Efficient Traffic Video Dehazing Using Adaptive Dark Channel Prior and Spatial–Temporal Correlations
por: Dong, Tianyang, et al.
Publicado: (2019) -
Unsupervised Dark-Channel Attention-Guided CycleGAN for Single-Image Dehazing
por: Chen, Jiahao, et al.
Publicado: (2020) -
Multi-channel feature fusion attention Dehazing network
por: Zou, Changjun, et al.
Publicado: (2023)