Cargando…
A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis
OBJECTIVE: The complex tibial plateau fractures involving both medial and posterolateral columns are of frequent occurrence in clinics, but the existing fixation system cannot deal with medial and posterolateral fragments simultaneously. Therefore, a novel locking buttress plate named as medial and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102290/ https://www.ncbi.nlm.nih.gov/pubmed/36793219 http://dx.doi.org/10.1111/os.13660 |
_version_ | 1785025661917724672 |
---|---|
author | Yan, Bangji Huang, Xiaotao Xu, Yingxing Zou, Chengshi |
author_facet | Yan, Bangji Huang, Xiaotao Xu, Yingxing Zou, Chengshi |
author_sort | Yan, Bangji |
collection | PubMed |
description | OBJECTIVE: The complex tibial plateau fractures involving both medial and posterolateral columns are of frequent occurrence in clinics, but the existing fixation system cannot deal with medial and posterolateral fragments simultaneously. Therefore, a novel locking buttress plate named as medial and posterior column plate (MPCP) was designed in this study to fix the simultaneous medial and posterolateral tibial plateau fractures. Meanwhile, the comparative finite element analysis (FEA) was conducted to investigate the discrepancy between MPCP and traditional multiple plates (MP + PLP) in their biomechanical characteristics. METHODS: Two 3D finite element models of simultaneous medial and posterolateral tibial plateau fracture fixed with MPCP and MP + PLP system, respectively, was constructed. To imitate the axial stress of knee joint in ordinary life, diverse axial forces with 100, 500, 1000, and 1500 N were applied in the two fixation models, and then the equivalent displacement and stress nephograms and values were obtained. RESULTS: The similar trend of displacement and stress increasing with the loads was observed in the two fixation models. However, several heterogeneities of displacement and stress distribution were found in the two fixation models. The max displacement and von Mises stress values of plates, screws, and fragments in the MPCP fixation model were significantly smaller than that in the MP + PLP fixation model, except for the max‐shear stress values. CONCLUSION: As a single locking buttress plate, the MPCP system showed the excellent benefit on improving the stability of the simultaneous medial and posterolateral tibial plateau fractures, compared with the traditional double plate fixation system. However, the excessive shear stress around screw holes should be paid attention to prevent trabecular microfracture and screw loosening. |
format | Online Article Text |
id | pubmed-10102290 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons Australia, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-101022902023-04-15 A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis Yan, Bangji Huang, Xiaotao Xu, Yingxing Zou, Chengshi Orthop Surg Research Articles OBJECTIVE: The complex tibial plateau fractures involving both medial and posterolateral columns are of frequent occurrence in clinics, but the existing fixation system cannot deal with medial and posterolateral fragments simultaneously. Therefore, a novel locking buttress plate named as medial and posterior column plate (MPCP) was designed in this study to fix the simultaneous medial and posterolateral tibial plateau fractures. Meanwhile, the comparative finite element analysis (FEA) was conducted to investigate the discrepancy between MPCP and traditional multiple plates (MP + PLP) in their biomechanical characteristics. METHODS: Two 3D finite element models of simultaneous medial and posterolateral tibial plateau fracture fixed with MPCP and MP + PLP system, respectively, was constructed. To imitate the axial stress of knee joint in ordinary life, diverse axial forces with 100, 500, 1000, and 1500 N were applied in the two fixation models, and then the equivalent displacement and stress nephograms and values were obtained. RESULTS: The similar trend of displacement and stress increasing with the loads was observed in the two fixation models. However, several heterogeneities of displacement and stress distribution were found in the two fixation models. The max displacement and von Mises stress values of plates, screws, and fragments in the MPCP fixation model were significantly smaller than that in the MP + PLP fixation model, except for the max‐shear stress values. CONCLUSION: As a single locking buttress plate, the MPCP system showed the excellent benefit on improving the stability of the simultaneous medial and posterolateral tibial plateau fractures, compared with the traditional double plate fixation system. However, the excessive shear stress around screw holes should be paid attention to prevent trabecular microfracture and screw loosening. John Wiley & Sons Australia, Ltd 2023-02-15 /pmc/articles/PMC10102290/ /pubmed/36793219 http://dx.doi.org/10.1111/os.13660 Text en © 2023 The Authors. Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Yan, Bangji Huang, Xiaotao Xu, Yingxing Zou, Chengshi A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis |
title | A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis |
title_full | A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis |
title_fullStr | A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis |
title_full_unstemmed | A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis |
title_short | A Novel Locking Buttress Plate Designed for Simultaneous Medial and Posterolateral Tibial Plateau Fractures: Concept and Comparative Finite Element Analysis |
title_sort | novel locking buttress plate designed for simultaneous medial and posterolateral tibial plateau fractures: concept and comparative finite element analysis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102290/ https://www.ncbi.nlm.nih.gov/pubmed/36793219 http://dx.doi.org/10.1111/os.13660 |
work_keys_str_mv | AT yanbangji anovellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT huangxiaotao anovellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT xuyingxing anovellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT zouchengshi anovellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT yanbangji novellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT huangxiaotao novellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT xuyingxing novellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis AT zouchengshi novellockingbuttressplatedesignedforsimultaneousmedialandposterolateraltibialplateaufracturesconceptandcomparativefiniteelementanalysis |