Cargando…
A predictive model based on random forest for shoulder-hand syndrome
OBJECTIVES: The shoulder-hand syndrome (SHS) severely impedes the function recovery process of patients after stroke. It is incapable to identify the factors at high risk for its occurrence, and there is no effective treatment. This study intends to apply the random forest (RF) algorithm in ensemble...
Autores principales: | Yu, Suli, Yuan, Jing, Lin, Hua, Xu, Bing, Liu, Chi, Shen, Yundong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102379/ https://www.ncbi.nlm.nih.gov/pubmed/37065924 http://dx.doi.org/10.3389/fnins.2023.1124329 |
Ejemplares similares
-
Semi-Supervised Learning in Medical Images Through Graph-Embedded Random Forest
por: Gu, Lin, et al.
Publicado: (2020) -
Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost
por: Meng, Delin, et al.
Publicado: (2021) -
Prediction of Freezing of Gait in Parkinson’s Disease Using a Random Forest Model Based on an Orthogonal Experimental Design: A Pilot Study
por: Chen, Zhonelue, et al.
Publicado: (2021) -
Changes with time in skin temperature of the shoulders in healthy controls and a patient with shoulder-hand syndrome
por: Koike, Yoichi, et al.
Publicado: (2010) -
Acupuncture for shoulder-hand syndrome after stroke: An overview of systematic reviews
por: Lei, Siyuan, et al.
Publicado: (2022)