Cargando…
A machine learning-based study on the impact of COVID-19 on three kinds of pollution in Beijing-Tianjin-Hebei region
Large-scale restrictions on anthropogenic activities in China in 2020 due to the Corona Virus Disease 2019 (COVID-19) indirectly led to improvements in air quality. Previous studies have paid little attention to the changes in nitrogen dioxide (NO(2)), fine particulate matter (PM(2.5)) and ozone (O(...
Autores principales: | Ren, Yuchao, Guan, Xu, Zhang, Qingzhu, Li, Lei, Tao, Chenliang, Ren, Shilong, Wang, Qiao, Wang, Wenxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102532/ https://www.ncbi.nlm.nih.gov/pubmed/37061051 http://dx.doi.org/10.1016/j.scitotenv.2023.163190 |
Ejemplares similares
-
Heavy haze pollution during the COVID-19 lockdown in the Beijing-Tianjin-Hebei region, China()
por: Zhang, Xin, et al.
Publicado: (2022) -
Urbanization’s Impacts on Ecosystem Health Dynamics in the Beijing-Tianjin-Hebei Region, China
por: Wu, Fan, et al.
Publicado: (2021) -
The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region
por: Zhang, Liyun, et al.
Publicado: (2019) -
Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities
por: Wang, Li, et al.
Publicado: (2018) -
Spatial Effect of Industrial Energy Consumption Structure and Transportation on Haze Pollution in Beijing-Tianjin-Hebei Region
por: Li, Meicun, et al.
Publicado: (2020)