Cargando…
Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning
BACKGROUND: A deep learning (DL) model based on representative biopsy tissues can predict the recurrence and overall survival of patients with glioma, leading to optimized personalized medicine. This research aimed to develop a DL model based on hematoxylin-eosin (HE) stained pathological images and...
Autores principales: | Luo, Chenhua, Yang, Jiyan, Liu, Zhengzheng, Jing, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102594/ https://www.ncbi.nlm.nih.gov/pubmed/37064206 http://dx.doi.org/10.3389/fneur.2023.1100933 |
Ejemplares similares
-
Corrigendum: Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning
por: Luo, Chenhua, et al.
Publicado: (2023) -
Expression of TCF7L2 in Glioma and Its Relationship With Clinicopathological Characteristics and Patient Overall Survival
por: Jing, Shiyuan, et al.
Publicado: (2021) -
Isocitrate dehydrogenase (IDH) status prediction in histopathology images of gliomas using deep learning
por: Liu, Sidong, et al.
Publicado: (2020) -
Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images
por: Yamashita, Rikiya, et al.
Publicado: (2021) -
Non-Invasive Prediction of Survival Time of Midline Glioma Patients Using Machine Learning on Multiparametric MRI Radiomics Features
por: Deng, Da-Biao, et al.
Publicado: (2022)