Cargando…
Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review
BACKGROUND: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102653/ https://www.ncbi.nlm.nih.gov/pubmed/37064042 http://dx.doi.org/10.3389/fmed.2023.1109411 |
_version_ | 1785025733239767040 |
---|---|
author | Moazemi, Sobhan Vahdati, Sahar Li, Jason Kalkhoff, Sebastian Castano, Luis J. V. Dewitz, Bastian Bibo, Roman Sabouniaghdam, Parisa Tootooni, Mohammad S. Bundschuh, Ralph A. Lichtenberg, Artur Aubin, Hug Schmid, Falko |
author_facet | Moazemi, Sobhan Vahdati, Sahar Li, Jason Kalkhoff, Sebastian Castano, Luis J. V. Dewitz, Bastian Bibo, Roman Sabouniaghdam, Parisa Tootooni, Mohammad S. Bundschuh, Ralph A. Lichtenberg, Artur Aubin, Hug Schmid, Falko |
author_sort | Moazemi, Sobhan |
collection | PubMed |
description | BACKGROUND: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. METHODS: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. RESULTS: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. DISCUSSION: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare. |
format | Online Article Text |
id | pubmed-10102653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101026532023-04-15 Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review Moazemi, Sobhan Vahdati, Sahar Li, Jason Kalkhoff, Sebastian Castano, Luis J. V. Dewitz, Bastian Bibo, Roman Sabouniaghdam, Parisa Tootooni, Mohammad S. Bundschuh, Ralph A. Lichtenberg, Artur Aubin, Hug Schmid, Falko Front Med (Lausanne) Medicine BACKGROUND: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. METHODS: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. RESULTS: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. DISCUSSION: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare. Frontiers Media S.A. 2023-03-31 /pmc/articles/PMC10102653/ /pubmed/37064042 http://dx.doi.org/10.3389/fmed.2023.1109411 Text en Copyright © 2023 Moazemi, Vahdati, Li, Kalkhoff, Castano, Dewitz, Bibo, Sabouniaghdam, Tootooni, Bundschuh, Lichtenberg, Aubin and Schmid. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Moazemi, Sobhan Vahdati, Sahar Li, Jason Kalkhoff, Sebastian Castano, Luis J. V. Dewitz, Bastian Bibo, Roman Sabouniaghdam, Parisa Tootooni, Mohammad S. Bundschuh, Ralph A. Lichtenberg, Artur Aubin, Hug Schmid, Falko Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review |
title | Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review |
title_full | Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review |
title_fullStr | Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review |
title_full_unstemmed | Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review |
title_short | Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review |
title_sort | artificial intelligence for clinical decision support for monitoring patients in cardiovascular icus: a systematic review |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102653/ https://www.ncbi.nlm.nih.gov/pubmed/37064042 http://dx.doi.org/10.3389/fmed.2023.1109411 |
work_keys_str_mv | AT moazemisobhan artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT vahdatisahar artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT lijason artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT kalkhoffsebastian artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT castanoluisjv artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT dewitzbastian artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT biboroman artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT sabouniaghdamparisa artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT tootoonimohammads artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT bundschuhralpha artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT lichtenbergartur artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT aubinhug artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview AT schmidfalko artificialintelligenceforclinicaldecisionsupportformonitoringpatientsincardiovascularicusasystematicreview |