Cargando…
Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review
BACKGROUND: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items...
Autores principales: | Moazemi, Sobhan, Vahdati, Sahar, Li, Jason, Kalkhoff, Sebastian, Castano, Luis J. V., Dewitz, Bastian, Bibo, Roman, Sabouniaghdam, Parisa, Tootooni, Mohammad S., Bundschuh, Ralph A., Lichtenberg, Artur, Aubin, Hug, Schmid, Falko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102653/ https://www.ncbi.nlm.nih.gov/pubmed/37064042 http://dx.doi.org/10.3389/fmed.2023.1109411 |
Ejemplares similares
-
Predicting readmission to the cardiovascular intensive care unit
using recurrent neural networks
por: Kessler, Steven, et al.
Publicado: (2023) -
Evaluating a Machine Learning Tool for the Classification of Pathological Uptake in Whole-Body PSMA-PET-CT Scans
por: Erle, Annette, et al.
Publicado: (2021) -
Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with (177)Lu-PSMA
por: Moazemi, Sobhan, et al.
Publicado: (2021) -
Machine Learning Facilitates Hotspot Classification in PSMA-PET/CT with Nuclear Medicine Specialist Accuracy
por: Moazemi, Sobhan, et al.
Publicado: (2020) -
Decision-support for treatment with (177)Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters
por: Moazemi, Sobhan, et al.
Publicado: (2021)