Cargando…

Symmetry–simplicity, broken symmetry–complexity

Complex phenomena are made possible when: (i) fundamental physical symmetries are broken and (ii) from the set of broken symmetries historically selected ground states are applied to performing mechanical work and storing adaptive information. Over the course of several decades Philip Anderson enume...

Descripción completa

Detalles Bibliográficos
Autor principal: Krakauer, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102721/
https://www.ncbi.nlm.nih.gov/pubmed/37065260
http://dx.doi.org/10.1098/rsfs.2022.0075
Descripción
Sumario:Complex phenomena are made possible when: (i) fundamental physical symmetries are broken and (ii) from the set of broken symmetries historically selected ground states are applied to performing mechanical work and storing adaptive information. Over the course of several decades Philip Anderson enumerated several key principles that can follow from broken symmetry in complex systems. These include emergence, frustrated random functions, autonomy and generalized rigidity. I describe these as the four Anderson Principles all of which are preconditions for the emergence of evolved function. I summarize these ideas and discuss briefly recent extensions that engage with the related concept of functional symmetry breaking, inclusive of information, computation and causality.