Cargando…
Artificial intelligence with a deep learning network for the quantification and distinction of functional adrenal tumors based on contrast-enhanced CT images
BACKGROUND: Functional adrenal tumors (FATs) are mainly diagnosed by biochemical analysis. Traditional imaging tests have limitations and cannot be used alone to diagnose FATs. In this study, we aimed to establish an artificially intelligent diagnostic model based on computed tomography (CT) images...
Autores principales: | Alimu, Parehe, Fang, Chen, Han, Yingnan, Dai, Jun, Xie, Chunmei, Wang, Jiyong, Mao, Yongxin, Chen, Yunmeng, Yao, Lu, Lv, Chuanfeng, Xu, Danfeng, Xie, Guotong, Sun, Fukang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102777/ https://www.ncbi.nlm.nih.gov/pubmed/37064374 http://dx.doi.org/10.21037/qims-22-539 |
Ejemplares similares
-
Diagnosis and Treatment of High-risk Pregnant Women With Cushing Syndrome Caused by Adrenal Tumor
por: Zhao, Juping, et al.
Publicado: (2021) -
High TNFSF13B expression as a predictor of poor prognosis in adrenocortical carcinoma
por: Mao, Yongxin, et al.
Publicado: (2021) -
Fibroblasts mediate the angiogenesis of pheochromocytoma by increasing COX4I2 expression
por: Mao, Yongxin, et al.
Publicado: (2022) -
COX4I2 is a novel biomarker of blood supply in adrenal tumors
por: Mao, Yongxin, et al.
Publicado: (2021) -
Lateroconal fascia suspension facilitates retroperitoneal partial nephrectomy
por: Alimu, Parehe, et al.
Publicado: (2022)