Cargando…

Avidity-Based Method for the Efficient Generation of Monoubiquitinated Recombinant Proteins

[Image: see text] Monoubiquitination of proteins governs diverse physiological processes, and its dysregulation is implicated in multiple pathologies. The difficulty of preparing sufficient material often complicates the biophysical studies of monoubiquitinated recombinant proteins. Here we describe...

Descripción completa

Detalles Bibliográficos
Autores principales: Nelson, Spencer L., Li, Yunan, Chen, Yue, Deshmukh, Lalit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103170/
https://www.ncbi.nlm.nih.gov/pubmed/37010382
http://dx.doi.org/10.1021/jacs.3c01943
Descripción
Sumario:[Image: see text] Monoubiquitination of proteins governs diverse physiological processes, and its dysregulation is implicated in multiple pathologies. The difficulty of preparing sufficient material often complicates the biophysical studies of monoubiquitinated recombinant proteins. Here we describe a robust avidity-based method that overcomes this problem. As a proof-of-concept, we produced milligram quantities of two monoubiquitinated targets, Parkinson’s protein α-synuclein and ESCRT-protein ALIX, using NEDD4-family E3 ligases. Monoubiquitination hotspots were identified by quantitative chemical proteomics. Using FRAP and dye-binding assays, we uncovered strikingly opposite effects of monoubiquitination on the phase separation and fibrillization properties of these two amyloidogenic proteins, reflecting differences in their intermolecular interactions, thereby providing unique insights into the impact of monoubiquitination on protein aggregation.