Cargando…
Ultrathin Tunable Optomechanical Metalens
[Image: see text] Reconfigurable metasurfaces offer great promises to enhance photonics technology by combining integration with improved functionalities. Recently, reconfigurability in otherwise static metasurfaces has been achieved by modifying the electric permittivity of the meta-atoms themselve...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103287/ https://www.ncbi.nlm.nih.gov/pubmed/36951636 http://dx.doi.org/10.1021/acs.nanolett.2c04105 |
Sumario: | [Image: see text] Reconfigurable metasurfaces offer great promises to enhance photonics technology by combining integration with improved functionalities. Recently, reconfigurability in otherwise static metasurfaces has been achieved by modifying the electric permittivity of the meta-atoms themselves or their immediate surrounding. Yet, it remains challenging to achieve significant and fast tunability without increasing bulkiness. Here, we demonstrate an ultrathin tunable metalens whose focal distance can be changed through optomechanical control with moderate continuous wave intensities. We achieve fast focal length changes of more than 5% with response time of the order of 10 μs. |
---|