Cargando…
Experimental investigation and development of a deep learning framework to predict process-induced surface roughness in additively manufactured aluminum alloys
A deep learning framework is developed to predict the process-induced surface roughness of AlSi10Mg aluminum alloy fabricated using laser powder bed fusion (LPBF). The framework involves the fabrication of round bar AlSi10Mg specimens, surface topography measurement using 3D laser scanning profilome...
Autores principales: | Muhammad, Waqas, Kang, Jidong, Ibragimova, Olga, Inal, Kaan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103541/ https://www.ncbi.nlm.nih.gov/pubmed/37070123 http://dx.doi.org/10.1007/s40194-022-01445-8 |
Ejemplares similares
-
Aluminum Alloy for Additive Manufacturing in Automotive Production
por: Caba, Stefan
Publicado: (2020) -
Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural Network
por: So, Min Seop, et al.
Publicado: (2022) -
Theoretical and Experimental Investigation on the 3D Surface Roughness of Material Extrusion Additive Manufacturing Products
por: Jiang, Shijie, et al.
Publicado: (2022) -
Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing
por: Langelandsvik, Geir, et al.
Publicado: (2021) -
Fatigue life analysis for 6061-T6 aluminum alloy based on surface roughness
por: Yang, Yali, et al.
Publicado: (2021)