Cargando…
A machine learning approach to predict self-protecting behaviors during the early wave of the COVID-19 pandemic
Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-prote...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103659/ https://www.ncbi.nlm.nih.gov/pubmed/37059871 http://dx.doi.org/10.1038/s41598-023-33033-1 |
Sumario: | Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-protecting behaviors against the coronavirus disease 2019 (COVID-19) during the first wave of the pandemic. Exploiting the interpretability of a Random Forest algorithm via Shapely values, we find that a higher regional incidence of COVID-19 triggers higher levels of self-protective behavior, as does a stricter government policy response. The level of individual knowledge about the pandemic, confidence in institutions, and population density also ranks high among the factors that predict self-protecting behaviors. We also identify a steep socioeconomic gradient with lower levels of self-protecting behaviors being associated with lower income and poor housing conditions. Among socio-demographic factors, gender, marital status, age, and region of residence are the main determinants of self-protective measures. |
---|