Cargando…

A machine learning approach to predict self-protecting behaviors during the early wave of the COVID-19 pandemic

Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Taye, Alemayehu D., Borga, Liyousew G., Greiff, Samuel, Vögele, Claus, D’Ambrosio, Conchita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103659/
https://www.ncbi.nlm.nih.gov/pubmed/37059871
http://dx.doi.org/10.1038/s41598-023-33033-1
Descripción
Sumario:Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-protecting behaviors against the coronavirus disease 2019 (COVID-19) during the first wave of the pandemic. Exploiting the interpretability of a Random Forest algorithm via Shapely values, we find that a higher regional incidence of COVID-19 triggers higher levels of self-protective behavior, as does a stricter government policy response. The level of individual knowledge about the pandemic, confidence in institutions, and population density also ranks high among the factors that predict self-protecting behaviors. We also identify a steep socioeconomic gradient with lower levels of self-protecting behaviors being associated with lower income and poor housing conditions. Among socio-demographic factors, gender, marital status, age, and region of residence are the main determinants of self-protective measures.