Cargando…
A machine learning approach to predict self-protecting behaviors during the early wave of the COVID-19 pandemic
Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-prote...
Autores principales: | Taye, Alemayehu D., Borga, Liyousew G., Greiff, Samuel, Vögele, Claus, D’Ambrosio, Conchita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103659/ https://www.ncbi.nlm.nih.gov/pubmed/37059871 http://dx.doi.org/10.1038/s41598-023-33033-1 |
Ejemplares similares
-
Characteristics associated with COVID-19 vaccine hesitancy
por: Borga, Liyousew G., et al.
Publicado: (2022) -
Twin Research in the Post-Genomic Era: Dissecting the Pathophysiological Effects of Adversity and the Social Environment
por: Turner, Jonathan D., et al.
Publicado: (2020) -
The impact of COVID-19 lockdown stringency on loneliness in five European countries
por: Caro, Juan Carlos, et al.
Publicado: (2022) -
COVID-19 compliance behaviors of older people: The role of cognitive and non-cognitive skills()
por: Clark, Andrew E., et al.
Publicado: (2022) -
Crime victimisation over time and sleep quality
por: Clark, Andrew E., et al.
Publicado: (2019)