Cargando…
The bacterial signature offers vision into the machinery of coral fitness across high‐latitude coral reef in the South China Sea
Coral–bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High‐throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in sh...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103774/ https://www.ncbi.nlm.nih.gov/pubmed/36054576 http://dx.doi.org/10.1111/1758-2229.13119 |
Sumario: | Coral–bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High‐throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in shaping the microbial community. The majority of OTUs significantly shifted at impacted sites and indicated distinction in the relative abundance of bacteria compartment/site‐wise. Richness and diversity were higher, and more taxa were enriched in the sediment communities. Proteobacteria dominated sediment samples, while Cyanobacteria dominated water samples. Coral tissue showed a shift among different sites with Proteobacteria remaining the dominant Phylum. Moreover, we report a dominance of Chlorobium genus in the healthy coral tissue sample collected from the severely damaged Site B, suggesting a contribution to tolerance and adaptation to the disturbing environment. Thus, revealing the complex functionally diverse microbial patterns associated with biotic and abiotic disturbed coral reefs will deliver understanding of the symbiotic connections and competitive benefit inside the hosts niche and can reveal a measurable footprint of the environmental impacts on coral ecosystems. We hence, urge scientists to draw more attention towards using coral microbiome as a self‐sustaining tool in coral restoration. |
---|