Cargando…
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracrani...
Autores principales: | Peterson, Victoria, Vissani, Matteo, Luo, Shiyu, Rabbani, Qinwan, Crone, Nathan E., Bush, Alan, Mark Richardson, R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104030/ https://www.ncbi.nlm.nih.gov/pubmed/37066306 http://dx.doi.org/10.1101/2023.04.05.535577 |
Ejemplares similares
-
Differentiation of speech-induced artifacts from physiological high gamma activity in intracranial recordings
por: Bush, Alan, et al.
Publicado: (2022) -
Enhancing oscillations in intracranial electrophysiological recordings with data-driven spatial filters
por: Schaworonkow, Natalie, et al.
Publicado: (2021) -
Filter Effects and Filter Artifacts in the Analysis of Electrophysiological Data
por: Widmann, Andreas, et al.
Publicado: (2012) -
Keyword Spotting Using Human Electrocorticographic Recordings
por: Milsap, Griffin, et al.
Publicado: (2019) -
Self-Supervised Denoising Image Filter Based on Recursive Deep Neural Network Structure
por: Kang, Changhee, et al.
Publicado: (2021)