Cargando…
Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling
Predominantly, head and neck cancer (HNC) is considered a regional disease and develops in the nasal cavity, oral cavity, tongue, pharynx, and larynx. In the advanced stage, the HNC spread into distant organs. By the time head and neck cancer diagnosed, the estimated metastasis is occurred in 10–40%...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104035/ https://www.ncbi.nlm.nih.gov/pubmed/37066273 http://dx.doi.org/10.1101/2023.04.04.535560 |
_version_ | 1785025958432997376 |
---|---|
author | Agarwal, Anshu Kansal, Vikash Farooqi, Humaira Prasad, Ram Singh, Vijay Kumar |
author_facet | Agarwal, Anshu Kansal, Vikash Farooqi, Humaira Prasad, Ram Singh, Vijay Kumar |
author_sort | Agarwal, Anshu |
collection | PubMed |
description | Predominantly, head and neck cancer (HNC) is considered a regional disease and develops in the nasal cavity, oral cavity, tongue, pharynx, and larynx. In the advanced stage, the HNC spread into distant organs. By the time head and neck cancer diagnosed, the estimated metastasis is occurred in 10–40% cases. The most important vital organs affected by distant metastasis are the lungs, bones, and liver. Despite several advancements in chemotherapies, no significant changes are observed as 5-year survival rate remains the same. Therefore, it is crucial to decipher molecular mechanisms contributing to the metastatic dissemination of head and neck cancer. Here, we tested a novel ALCAM/TFAP2 signaling by targeting multidisciplinary miR-214 expression in head and cancer cells. Our results revealed that HNC cell lines (CAL27, SCC-9, SCC-4, and SCC-25) exhibit higher expression of miR-214 compared with normal human bronchial epithelial (NHBE) cells. Higher expression of miR-214 drives the invasive potential of these cell lines. Down-regulation of miR-214 in CAL27 and SCC-9 cells either using an anti-miR-214 inhibitor (50nM) or a small molecule of green tea (EGCG) inhibited cell invasion. Treating CAL27 and SCC-9 cells with EGCG also reduces ALCAM expression, a key activated leukocyte cell adhesion molecule, potentially blocking mesenchymal phenotype. Dietary administration of EGCG significantly inhibits distant metastasis of SCC-9 cells into the lungs, liver, and kidneys. Our results also demonstrate that the reduction of miR-214 expression influences in vitro cell movement and extravasation, as evident by reduced CD31 expression, a neovascularization marker. Together, these studies suggest that identifying bioactive molecules that can inhibit distant metastasis regulated by the miRNAs may provide potent interventional approaches and a better understanding of the complex functions of miRNAs and their therapeutic targets for clinical application. |
format | Online Article Text |
id | pubmed-10104035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101040352023-04-15 Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling Agarwal, Anshu Kansal, Vikash Farooqi, Humaira Prasad, Ram Singh, Vijay Kumar bioRxiv Article Predominantly, head and neck cancer (HNC) is considered a regional disease and develops in the nasal cavity, oral cavity, tongue, pharynx, and larynx. In the advanced stage, the HNC spread into distant organs. By the time head and neck cancer diagnosed, the estimated metastasis is occurred in 10–40% cases. The most important vital organs affected by distant metastasis are the lungs, bones, and liver. Despite several advancements in chemotherapies, no significant changes are observed as 5-year survival rate remains the same. Therefore, it is crucial to decipher molecular mechanisms contributing to the metastatic dissemination of head and neck cancer. Here, we tested a novel ALCAM/TFAP2 signaling by targeting multidisciplinary miR-214 expression in head and cancer cells. Our results revealed that HNC cell lines (CAL27, SCC-9, SCC-4, and SCC-25) exhibit higher expression of miR-214 compared with normal human bronchial epithelial (NHBE) cells. Higher expression of miR-214 drives the invasive potential of these cell lines. Down-regulation of miR-214 in CAL27 and SCC-9 cells either using an anti-miR-214 inhibitor (50nM) or a small molecule of green tea (EGCG) inhibited cell invasion. Treating CAL27 and SCC-9 cells with EGCG also reduces ALCAM expression, a key activated leukocyte cell adhesion molecule, potentially blocking mesenchymal phenotype. Dietary administration of EGCG significantly inhibits distant metastasis of SCC-9 cells into the lungs, liver, and kidneys. Our results also demonstrate that the reduction of miR-214 expression influences in vitro cell movement and extravasation, as evident by reduced CD31 expression, a neovascularization marker. Together, these studies suggest that identifying bioactive molecules that can inhibit distant metastasis regulated by the miRNAs may provide potent interventional approaches and a better understanding of the complex functions of miRNAs and their therapeutic targets for clinical application. Cold Spring Harbor Laboratory 2023-04-06 /pmc/articles/PMC10104035/ /pubmed/37066273 http://dx.doi.org/10.1101/2023.04.04.535560 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Agarwal, Anshu Kansal, Vikash Farooqi, Humaira Prasad, Ram Singh, Vijay Kumar Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling |
title | Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling |
title_full | Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling |
title_fullStr | Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling |
title_full_unstemmed | Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling |
title_short | Inhibition of miR-214 expression by small molecules alleviates head and neck cancer metastasis by targeting ALCAM/TFAP2 signaling |
title_sort | inhibition of mir-214 expression by small molecules alleviates head and neck cancer metastasis by targeting alcam/tfap2 signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104035/ https://www.ncbi.nlm.nih.gov/pubmed/37066273 http://dx.doi.org/10.1101/2023.04.04.535560 |
work_keys_str_mv | AT agarwalanshu inhibitionofmir214expressionbysmallmoleculesalleviatesheadandneckcancermetastasisbytargetingalcamtfap2signaling AT kansalvikash inhibitionofmir214expressionbysmallmoleculesalleviatesheadandneckcancermetastasisbytargetingalcamtfap2signaling AT farooqihumaira inhibitionofmir214expressionbysmallmoleculesalleviatesheadandneckcancermetastasisbytargetingalcamtfap2signaling AT prasadram inhibitionofmir214expressionbysmallmoleculesalleviatesheadandneckcancermetastasisbytargetingalcamtfap2signaling AT singhvijaykumar inhibitionofmir214expressionbysmallmoleculesalleviatesheadandneckcancermetastasisbytargetingalcamtfap2signaling |