Cargando…
Implementation considerations for deep learning with diffusion MRI streamline tractography
One area of medical imaging that has recently experienced innovative deep learning advances is diffusion MRI (dMRI) streamline tractography with recurrent neural networks (RNNs). Unlike traditional imaging studies which utilize voxel-based learning, these studies model dMRI features at points in con...
Autores principales: | Cai, Leon Y., Lee, Ho Hin, Newlin, Nancy R., Kim, Michael E., Moyer, Daniel, Rheault, François, Schilling, Kurt G., Landman, Bennett A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104046/ https://www.ncbi.nlm.nih.gov/pubmed/37066284 http://dx.doi.org/10.1101/2023.04.03.535465 |
Ejemplares similares
-
Convolutional-recurrent neural networks approximate diffusion tractography from T1-weighted MRI and associated anatomical context
por: Cai, Leon Y., et al.
Publicado: (2023) -
Visualization, Interaction and Tractometry: Dealing with Millions of Streamlines from Diffusion MRI Tractography
por: Rheault, Francois, et al.
Publicado: (2017) -
Fast Streamline Search: An Exact Technique for Diffusion MRI Tractography
por: St-Onge, Etienne, et al.
Publicado: (2022) -
Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
por: Schilling, Kurt G., et al.
Publicado: (2021) -
Prevalence of white matter pathways coming into a single white matter voxel orientation: The bottleneck issue in tractography
por: Schilling, Kurt G., et al.
Publicado: (2021)