Cargando…
Emergence of belief-like representations through reinforcement learning
To behave adaptively, animals must learn to predict future reward, or value. To do this, animals are thought to learn reward predictions using reinforcement learning. However, in contrast to classical models, animals must learn to estimate value using only incomplete state information. Previous work...
Autores principales: | Hennig, Jay A., Pinto, Sandra A. Romero, Yamaguchi, Takahiro, Linderman, Scott W., Uchida, Naoshige, Gershman, Samuel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104054/ https://www.ncbi.nlm.nih.gov/pubmed/37066383 http://dx.doi.org/10.1101/2023.04.04.535512 |
Ejemplares similares
-
Emergence of belief-like representations through reinforcement learning
por: Hennig, Jay A., et al.
Publicado: (2023) -
Belief state representation in the dopamine system
por: Babayan, Benedicte M., et al.
Publicado: (2018) -
Time representation in reinforcement learning models of the basal ganglia
por: Gershman, Samuel J., et al.
Publicado: (2014) -
Spontaneous behaviour is structured by reinforcement without explicit reward
por: Markowitz, Jeffrey E., et al.
Publicado: (2023) -
Predictive representations can link model-based reinforcement learning to model-free mechanisms
por: Russek, Evan M., et al.
Publicado: (2017)