Cargando…

Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation

Mutations in the granulin (GRN) gene, resulting in haploinsufficiency of the progranulin (PGRN) protein, are a leading cause of frontotemporal lobar degeneration (FTLD) and PGRN polymorphisms are associated with Alzheimer’s disease (AD) and Parkinson’s disease (PD). PGRN is a key regulator of microg...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Huan, Yang, Cha, Nana, Alissa L., Seeley, William W., Smolka, Marcus, Hu, Fenghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104136/
https://www.ncbi.nlm.nih.gov/pubmed/37066328
http://dx.doi.org/10.1101/2023.04.06.535844
Descripción
Sumario:Mutations in the granulin (GRN) gene, resulting in haploinsufficiency of the progranulin (PGRN) protein, are a leading cause of frontotemporal lobar degeneration (FTLD) and PGRN polymorphisms are associated with Alzheimer’s disease (AD) and Parkinson’s disease (PD). PGRN is a key regulator of microglia-mediated inflammation but the mechanism is still unknown. Here we report that PGRN interacts with sPLA2-IIA, a secreted phospholipase involved in inflammatory responses, to downregulate sPLA2-IIA activities and levels. sPLA2-IIA expression modifies PGRN deficiency phenotypes in mice and sPLA2-IIA inhibition rescues inflammation and lysosomal abnormalities in PGRN deficient mice. Furthermore, FTLD patients with GRN mutations show increased levels of sPLA2-IIA in astrocytes. Our data support sPLA2-IIA as a critical target for PGRN and a novel therapeutic target for FTLD-GRN.