Cargando…
Causal Discovery and Optimal Experimental Design for Genome-Scale Biological Network Recovery
Causal discovery of genome-scale networks is important for identifying pathways from genes to observable traits –e.g. differences in cell function, disease, drug resistance and others. Causal learners based on graphical models rely on interventional samples to orient edges in the network. However, t...
Autores principales: | Shah, Ashka, Ramanathan, Arvind, Hayot-Sasson, Valerie, Stevens, Rick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104184/ https://www.ncbi.nlm.nih.gov/pubmed/37064526 |
Ejemplares similares
-
Experimental and quasi-experimental designs for generalized causal inference
por: Shadish, William R.
Publicado: (2002) -
Experimental Biology for the Identification of Causal Pathways in Atherosclerosis
por: Guo, Yanhong, et al.
Publicado: (2016) -
Accelerated knowledge discovery from omics data by optimal experimental design
por: Wang, Xiaokang, et al.
Publicado: (2020) -
Causal discovery for the microbiome
por: Corander, Jukka, et al.
Publicado: (2022) -
Deep reinforcement learning for optimal experimental design in biology
por: Treloar, Neythen J., et al.
Publicado: (2022)