Cargando…

Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning impairments in schizophrenia

Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) is associated with poor social and functional outcomes, but nevertheless remains understudied relative to other neurocognitive domains. Moreover, transcranial direct current stimulation (...

Descripción completa

Detalles Bibliográficos
Autores principales: Javitt, Daniel, Sehatpour, Pejman, Kreither, Johanna, Lopez-Calderon, Javier, Shastry, Adithya, De-Baun, Heloise, Martinez, Antigona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104242/
https://www.ncbi.nlm.nih.gov/pubmed/37066410
http://dx.doi.org/10.21203/rs.3.rs-2711867/v1
Descripción
Sumario:Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) is associated with poor social and functional outcomes, but nevertheless remains understudied relative to other neurocognitive domains. Moreover, transcranial direct current stimulation (tDCS) can influence underlying brain function in Sz and may be especially useful in enhancing local cortical plasticity, but underlying neural mechanisms remain incompletely understood. Here, we evaluated performance of Sz individuals on the Serial Reaction Time Task (SRTT), which has been extensively used in prior tDCS research, in combination with concurrent tDCS and EEG source localization first to evaluate the integrity of visuomotor learning in Sz relative to other cognitive domains and second to investigate underlying neural mechanisms. Twenty-seven individuals with Sz and 21 healthy controls (HC) performed the SRTT task as they received sham or active tDCS and simultaneous EEG recording. Measures of motor, neuropsychological and global functioning were also assessed. Impaired SRTT performance correlated significantly with deficits in motor performance, working memory, and global functioning. Time-frequency (“Beamformer”) EEG source localization showed beta-band coherence across supplementary-motor, primary-motor and visual cortex regions, with reduced visuomotor coherence in Sz relative to HC. Cathodal tDCS targeting both visual and motor regions resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Overall, these findings demonstrate the utility of the SRTT to study mechanisms of visuomotor impairment in Sz and demonstrate significant tDCS effects on both learning and connectivity when applied over either visual or motor regions. The findings support continued study of dysfunctional dorsal-stream visual connectivity and motor plasticity as components of cognitive impairment in Sz, of local tDCS administration for enhancement of plasticity, and of source-space EEG-based biomarkers for evaluation of underlying neural mechanisms.