Cargando…
GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning
Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analy...
Autores principales: | Ha, Jun Seo, Jeong, Hyundoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104345/ https://www.ncbi.nlm.nih.gov/pubmed/37058497 http://dx.doi.org/10.1371/journal.pone.0284527 |
Ejemplares similares
-
Accurate Single-Cell Clustering through Ensemble Similarity Learning
por: Jeong, Hyundoo, et al.
Publicado: (2021) -
Graph Autoencoder with Preserving Node Attribute Similarity
por: Lin, Mugang, et al.
Publicado: (2023) -
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering
por: Wang, Yunhe, et al.
Publicado: (2023) -
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
por: Geddes, Thomas A., et al.
Publicado: (2019) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019)