Cargando…
KAGN:knowledge-powered attention and graph convolutional networks for social media rumor detection
Rumor posts have received substantial attention with the rapid development of online and social media platforms. The automatic detection of rumor from posts has emerged as a major concern for the general public, the government, and social media platforms. Most existing methods focus on the linguisti...
Autores principales: | Cui, Wei, Shang, Mingsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104434/ https://www.ncbi.nlm.nih.gov/pubmed/37089903 http://dx.doi.org/10.1186/s40537-023-00725-4 |
Ejemplares similares
-
Dynamic graph convolutional networks with attention mechanism for rumor detection on social media
por: Choi, Jiho, et al.
Publicado: (2021) -
Rumor detection based on propagation graph neural network with attention mechanism
por: Wu, Zhiyuan, et al.
Publicado: (2020) -
Rumor detection on social media using hierarchically aggregated feature via graph neural networks
por: Xu, Shouzhi, et al.
Publicado: (2022) -
Rumor detection driven by graph attention capsule network on dynamic propagation structures
por: Yang, Peng, et al.
Publicado: (2022) -
Early detection of rumors based on source tweet-word graph attention networks
por: Jia, Hao, et al.
Publicado: (2022)